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Abstract

In this paper we propose a new method for solving a set of nonlinear algebraic equations
encountered in the DC and transient analyses of electronic circuits. This method will be called
Quadratic Newton-Raphson Method (QNRM), since it is based on the Newton-Raphson Method
(NRM) but effectively takes into account the second order derivative terms in the Taylor series
expansion of the nonlinear algebraic equations. The second order terms are approximated by linear
terms using a carefully estimated solution at each iteration. Preliminary simulation results show
that the QNRM saves the overall computational time significantly in the DC and transient analysis,
compared with the conventional NRM.
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The Newton-Raphson Method (NRM) is
perhaps the most widely used iterative method for
solving a set of nonlinear equations which are
BSAT 1988%F 58 48 first transformed approximately into a set of
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linear equations. This method considers only
the first order terms of the Taylor series expansion
of the original set of nonlinear equations around
the current solution point obtained in the iterative
procedure, and converges quadratically when the
initially assumed solution point is close enough
to the true solution point.

In this paper we take into consideration the
second order terms of the Taylor series expansion
in the hope of improving the approximation and
hence convergence. In this method the second
order terms are actually transformed approxi-
mately into linear terms, however, utilizing the
currently available solution in order to linearize
the whole problem. This approach to be called
Quadratic Newton Raphson Method (QNRM),
may then be regarded as an improved linearization
of the nonlinear equations.

In applying the QNRM to the circuit simulation
problem we may use a companion model for each
nonlinear element as modified in accordance with
the concept described in the above. Incorporating
the second order effect into the companion model
requires negligible computation overhead and
saves the overall computation time significantly.
Extensive simulation results show that with the
modified companion model, the number of iter-
ations needed is about halved and the overall
computation time is saved by about 30%, in
average, as compared with the conventional com-
panion model based on the NRM. About the same
improvements were obtained when the QNRM is
incorporated into SPICE [4].

II. Quadratic Newton-Raphson Method

In order to give the idea of the new approach,
let us first consider the simplest case, ie., a
nonlinear equation f(x)=0 with a single variable x.
Under the assumption that f(x) is differentiable
three times, the Taylor series expansion of f(x)
about x=x yields

F =168+ () - () + EED (e

+ 880 ey (1)
where x <t <xK
The NRM linearizes f(x) at x =x k taking only
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the first order term in Eq. (1), and tries to reach
the true solution iteratively. That is,

0 =f(x) = f () +1 (&) - (&7 =)
or
U, .9
Rt = — (2)

A better approximation may be obtained if
we include the second order term in Eq. (1),
namely

0 =f(x) =f(x*)+f () &
7 )
2

—x)+

. (xk+17,xk)2 (3)

Solution of this equation is complicated by the
presence of the quadratic term, although it is
manageable in the case of a single variable.

However, by approx1mat1ng the second order
term (x t xk)2 by (xk oy ) ( )
where x<t! is an estimate of the solution obtamed

in some way at each iteration, we can linearize
Eq. (3) as

0 =f(x) :f(xk)+[ £ () + f—zﬁ :

G o) [+ G ) (4)
from which a better solution is obtained as
PR f,f(ik"k)) (5)
£/ &)+ — - (& —x*)

The most important part of this new approach
is how to estimate xX'1 properly, because an
improper choose of x +1 may yield a worse result.
Several ways of estimating x +1 are conceivable;
we may use (a) the NRM itself, or (b) the secant
method [1], or (c) the Aitken method [1], all of
which are the first order methods and hence do
not require much computation time. In order to
treat the order of convergence in the QNRM, we
state the following theorem, which is proven in
the Appendix.

Theorem 1: For a given nonlinear equation
f(x)=0, assume that f(x), £(x), f’(x) and £’(x)
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are continuous and f’ (x) F0 for all x in some
neighborhood of the solution. Then, if the solu-
tion method with the p-th order of convergence
is used as estimation of the solution point xK*!
(p < 2) and the initial approximation is chosen
sufficiently close to the solution, the iterated
approximation of the QNRM will converge to the
solution with the (p+1)-th order of convergence.

To summarize the steps in each iteration of
the QNRM;

step 1: calculate ff(xk), f’(xk), i (xk)

step 2: estimate x< 1

step 3: obtain a new approximate solution
xK+1 by Eq. (5).

For the testing purpose we have chosen the
following equations given in [2]:

plif(x)=e—x—1=10
p2 ! f(x)=x+2x-e¥+e*=(

p3 i) = —10x,+2+ 8 =10
f20) =x x3+x,—10x,+8=0
pd ! f(x) =33 —cos(x,x:) —0.5=0

fo(x) =x3 —81(x,+0. 1) +sin(x:) +1.06= 0

107—3 _

fa(x) =e %2 +20x; + 3

0

We applied the three methods for estimating
<+ 55 suggested in the above, and obtained the
results as given in Table 1. We see that QNRM
with the Aitken estimate of X< , the best among
these estimates, improves over the NRM significan-
tly in the number of iterations and also in the
overall computation time. However, since the
Aitken method is effective only when the current
approximation is close to the true solution, we
will choose the NRM itself to estimate x5*! for
which case it can be shown that the rate of con-
vergence of the proposed scheme is of a third
order.

IH. Circuit Simulation with Improved companion
models

In the simulation of a nonlinear circuit, it is
a general practice to employ a linearized com-
panion model based on the NRM for each
nonlinear element in the circuit, We can then
expect to obtain an improved companion model

(124)
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Table 1. Comparison results of the NRM and
QNRM with various estimation methods.

Method QNRM
NRM NR Secant Aitken
Problem Estimate | Estimate | Estimate
P 34*/0, 1 1 21/0.0662 { 27/0.0662 | 19/0.0667
P2 {43/0.167 25/0.126.] 34/0.126 17/0.1
P3 82/0.267 | 5/0.366 | non-converge 61/0. 366
P4 17/0.22 | 10/0.2 non-converge | 8/0.18

*/+ - % of iterations/computing time(sec)
(i.e. P3 has different solutions in spite of the same
initiall point)

k
Iev

i=f )

{b)

(a)

Fig.1. (a) A two terminal non-linear element (b)
and its companion model.

by applying the QNRM to each nonlinear element.

Consider a two-terminal nonlinear element
defined by i=f (v) as shown in Fig 1(a). The
associated companion model is depicted in Fig
1(b) where, in the case of the NRM,

Ke=1" (V%) (6a)

Ko =F (V) —Gl V¢ (6b)
and, in the case of the QNRM,

Gro= )+ 8L (-9 (7a)

k=1 () —GEq- v (7b)

where vk and C’kﬂ represent the current and the

estimated node voltages at the k-th iteration,
respectively. Note-that Eq. (7) as well as Eq. (6)
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represents a linear companion model

The calculation of f (v') may be trivial in
some cases (as in the diode case since i=f(v)=
Is[exp (v/vT) - 1] and £ (v)=f (v)/vT and
similarly in the bipolar transistor case), but not in
other cases. In the latter cases, f” (v') can be
calculated approximately, for example, by the
following formula;

_f) —f ()

£ (Vk) ~—‘7k+1 —V

(8)

As will be shown, a good estimate of 1
can be obtained, instead of solving the whole
circuit by, say, the NRM, by using only those
values related to the particular nonlinear element
under consideration and obtained at the k-th
iteration. Consider Fig. 1 ‘once again. At the k-th
iteration with the QNRM,

P =G v F 18, (9)

A good estimate of irkﬂ is obtained by substit-

uting i* for i¥*! in Eq. (9):

e SN (10)
or

oo = T (1)

eq

It turn out that estimate of v<'1 by this
formula is almost as good as that by the NRM.
Since computation overhead of gkt ty Eq. (11)
is minimal, the overall computation time will
be almost proportional to the total number of
iterations. Henceforth this model with Eq. (11)
substituted in Eq. (7) will be referred to as ‘“‘the
simple companion model by the QNRM”.

IV. Transient Analysis of Dynamic Networks

As is well known, the concept of the com-
panion model can be extended to the transient
analysis of dynamic networks [3]. In the case of
a linear capacitance, it is transformed to a fixed
conductance in shunt with a current source which
must be updated at each time point. For a
nonlinear capacitance, it is transformed to a non-
linear conductance in shunt with a current source.
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Together with the companion model for the
nonlinear resistive elements in the circuit, the
whole resistive circuit is solved iteratively to get
a solution at each time point. The simple com-
panion model by the QNRM as introduced in the
previous section fits this scheme readily, and was
incorporated into SPICE to handle tiransient
analysis of dynamic linear (or nonlinear) net-
works.

V. Simulation Results

Table 2 compares the simulation results of
typical BIT circuits (bench mark circuits given in
the SPICE manual [4]) by the NRM and by the
QNRM. The QNRM reduces not only the
number of iterations but also the overall com-
putation time by about 20% as compared with
the conventional NRM, In particular, simulation
by the simple companion mode! by the QNRM
reduced the computation time approximately in
proportion to the number of iterations. Reduc-
tion of computation time by the simple com-
panion model by the QNRM, due to the reduced
number of linerization processes, was not signifi-
cant for relatively small circuits. In Table 2, in
case of the differential amplifier the conventional
NRM failed to converge because of the overflow

Table 2. Simulation results of BJT circuits by
the NRM and by the QNRM.

Method Method | Method | Method {Method )} Method
Circuit 1 2 3 4 5
Simple "

Diog 38 2 20 5 4
One Stage | 4 /0 368+ | 22/0.35 | 22/0.22 | 7/0.12 | 6/0.1
Tr.Amp
,?C?““i“ 35/0.79 | 18/0.71| 20/0.48 | 7/0.2 | 7/0.2

riger
Differen- non- 21/0.38 non- 6/0.2 | 5/0.16
tial Amp converge " | converge ’ ’
Cascaded | a7/6 467 | 20/0.39 | 20/0.25| 6/0.13 | 5/0.11
RTL INV : : ‘ : .

* ! # of iterations
*/+ . # of iterations/computing time (sec)
Method1 . Newton Raphson Method
Method2 : QNRM (estimate of V**' by NRM)
Method3 : QNRM (estimate of V**' by simplified
companion model)
Modified NRM (both I and V axes are
explored as in SPICE)
QNRM (estimate of V**' or **' by method4)

Method4 :

Method5 :
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of the exponential term in the diode equation,
although it converges when both current and
voltage axes are explored during linerization. With
the simple companion model by the QNRM, this
cumbersome exploration was not needed for
convergence.

The QNRM with the simple companion model
was incorporated into SPICE2, and the result
is given in Table 3. Again the bench mark circuits
given in a SPICE manual were used. Table 3 shows
that in the cases of 741 OP amp and 74LS in-
verter, in particular, 25% reduction of the com-
putation time is obtained with the QNRM. Table
4 shows the results of transient analysis of 74LS
inverter. For the first input waveform (a pulse
with a rising rate 5v/3ns) SPICE with the NRM
failed to converge, whereas SPICE with the QNRM
did converge. For the second input waveform (a
pulse with a rising rate 5v/5ns) both methods
vielded covergence. But with the QNRM the
transient solution was obtained with less time
points (less computation time) and greater
accuracy than with the NRM, due to the time
step control in SPICE by the local trunction error.

VI. Conclusion

The proposed QNRM when applied to circuit

18 BFIBERNEE F26% £ 1%

Table 4. Simulation results of transient analysis

with the QNRM.

Method | SPICE | SPICE with the .
. Reduction
companion model :
Cireuit SPICE by QNRM ratio
non-
T4LS Input 1 convergence Thsec
Inverter | Input2 | 94.27sec 81.25 14%

simulation requires less number of iterations, less
overall computation time and yields greater
accuracy as compared with the NRM.

The QNRM can be impleménted in a simple
way if we use the conventional circuit simulator
(such as SPICE) which uses the companion model
for nonlinear elements and dynamic elements,
since only the associated companion model need
be modified according to the proposed scheme.

In the present paper the QNRM was applied
only to the BJT circuits. Its application to the
MOS circuits is expected to encounter some
difficulty in calculating the second order deriv-
ative of the drain current as a function of the
drain-source voltage and the gate voltage. This
problem will be investigated in the future. Ano-
ther topic is a better estimate of F* for con-
vergence acceleration other than that proposed
in this paper.

Table 3. Simulation results of the QNRM with the simple companion model.

Method SPICE with the
# of # of SPICE on ;:r;g:lhgg gggﬁnion Reduction
elements |  nodes CPU time CPU_time ratio
Circuit for DC sol. for DC sol.

Diode Circuit 10Diodes 12 10/1.15 99/1.05 16%
RTL Inverter 2BJT’s 10/0. 68 9/0. 61 11%
Schmitt Triger 4BJT’s 66/3.65 38/2.35 36%
Diff Amp 4BJT’s 10*/1. 15* 9/1.05 9%
uLs SBIT s 15 17/3.48 11/2.63 25%
et BT s 28 28/8.6 24/7.28 16%
7410P Amp 28BJT’s 27 21/11. 21 13/8. 383 26%
Active LPF 1 128BJT’s 171 13/47. 67 8/39.28 18%
Active LPF 2 175BJT’ s 240 17/84. 48 11/73. 48 13%
Active BPF 312BJT’s 291 52/377.7 27/287. 0 24%

*/* . # of iterations/computing time (sec)
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Appendix
The proof of Theorem 1:
For the notational convenience, let X, denote
the n-th approximation of the QNRM and f(n +1
the estimation of x_ (n 2 0). Then, the second

order Taylor approximation of f(x), expanded
about Xp is

0 =f(xn) +f" (xn) - (@—xq) + %f” (xn) - (a—xn)*+
%f”’ (£n)* (@—xn)* (A1)

where « is the solution point of f(x) and X,
g Sa

The n-th QNRM approximation is

0 =£6x)+| 1 G+ 31 o)+ (vt x|

(xn+l _xn) (AZ)
and hence,
X =~ Xa— { ) (A3)
f (Xn) + 5 f (Xn) * (fn41—Xn)
Using Eqs. (A1) and (A3),
(@~Xn) =
) (o _ (&) s
2P ) (@—%ns1) {@—xn) + 57 ) (@—x%n)
£ (x, .
1+ o7 (Xn) . (Xn+| ”'Xn)
(A4)

If the estimation has the p-th order of conver-
gence, the relation between x and in 41 can be
written as n

(a—ﬁnﬂ) =En- (‘I“xn)P (AS)

where En is the error formula factor of the esti-
mation method and is bounded by E for all n
(i.e.IEn | <E for n 20) [1]. In addition, the
estimation method in Eq. (A5) leads in+1 to
a in itself, which implies that

FEn (@—xa)P ' 1 <1 (AB)
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Without loss of generality, assume the estim-
ation method in Eq. (AS5) can find the solution
« for any initial approximation in the interval
I, where the interval I=[a-€, q+e€] satisfies the
assumptions of the theorem and € is some positive
number. And let

Max | { (x) |
— X&1

M= 2Min T T Go) | (A7)

Substituting Eq. (AS5) into Eq. (A4), we obtain

(a—xnﬂ) =Qn - (a_xn)PH (AS)
f”( n) . f”’ (fn) —_ 2-P
Qu= — 2t ?Xn) Ent 6f’ (Xn) (a=xa)
1+ ;f,)((;n) ' [1'-En (a—‘xn)P_l] ° (G_Xn)
(A9)

In (A8), Qn is bounded by some fixed value Q
with choosing ax_| < ﬁ which implies that
lex 4! < Q. kv-xnl?’ﬂ. Pick an initial approxi-
mation xg such thatla-xol < e, M.Ia-xol <%
and Q.la-x P < 1. Then, from (AS), lox, |
< e Mia- x| <% and Q.lax; P < 1 and
lexy | x<|@x,l. We can apply the same argu-
ment to X;, X, .., inductively, showing that
Ia-xnl < e,M.'a-xn|<%, Q.Ia-xnlp <1 and
la-x; < Ioz-xn_1 |[foralln=>1. Consequently, we
obtain

| a—xnl < 61/— (QF | a—x, 1)1 (A10)

Since Q.la=x,[P <1, (A10) shows that Xy~ o as
n —> oo Also, (A8) represents that the the conver-
gence order of the QNRM is equal to (p+1). This
completes the proof.
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