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Optimal Viscoelastic Layered Dynamic Vibration Absorber
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ABSTRACT

The effectiveness of using a composite beam with constrained visco-elastic layer as a dynamic vibra-

tion absorber is investigated. The performance of this absorber is evaluated in terms of displacement

transmissibility when applied to a primary beam with built-in ends and compared to that of the uniform

beam absorber. The results of analysis and design show that it is possible to suppress simultaneoulsy

the peak transmissibilities at two or more resonance frequencies and the optimal parameters are Jocated

within the available viscoelastic material properties.

I. INTRODUCTION

The dynamic vibration absorber, which has
been developed and used successfully as an
effective means for controlling the unwanted
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vibrations of various mechanical structures and
equipments, has been an lasting study object
for improving its performance and enlarging the
spectrum of application. 1)

The efficiency of a dynamic vibration
absorber is assessed in terms of the reduction
level of transmissibility of primary vibrating
system in the vicinity of resomance frequencies
and the width of effective frequency band.
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For the system of multi-degrees of freedom
or distributed parameter systemn, it may be of
concern fo suppress simultaneously the transmis-
sibility at several resonance frequencies.

Snowdon performed extensive analyses for
the effects of the lumped, parameter dynamic
absorber, which is composed of mass, spting
and viscous damper, to the primary system of
beam, 2)

Jacquot designed an optimal dynamic
absorber for the 1st mode vibration of a beam
using approximation method 3) and the method
was extended to the plate and shell system by
Warburrton and Ayorinde. 4)

As a distributed parameter absorber, Snow-
don considered the problem of implementing
circular plate absorber with massive rim, to one
degree of freedom and distributed primary
system. §)

And Jacquot presented a cantilever beam
absorber attached to one degree of freedom
primary system. 6)

Preceding studies considered the absorbers
which are effective at only one resonance fre-
quency.

Recently, Snowdon proposed a cruciform
absorber that can be effectively tuned simul-
taneously to two resonance frequencies 7)
and Yamaguchi used some viscoelastic materials
for absorber heam and connecting block, so rigid
body motion was permitted between primary
system and absorber beam and so the absorber
can contro! more than two resonance frequen-
cies. 8)

But the absorber is less effective relatively at
the 1ist resonance frequency which generally
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is important in most vibration problems.

To synthesize the optimal dynamic absorber,
optimal tuning ratio and damping factor must
be determined, and the greater mass ratio be-
tween absorber and primary system requires the
greater damping factor,

Generally, it is difficult to obtain the vis-
coelstic materials that satisfy completely all the
requirements about stiffness and damping, and
also the Odamping stiffness characteristics of
viscoelastic materials largely depend on the
operation frequency and environmental tem-
perature.

So this study is interested in investigating
the usefulness of the viscoelastic cored composite
beam as a dynamic vibration absorber, which is
used widely for the purpose of solving the
vibration problems.

Through theoretic analysis, the effects of
favorable dynamic damping characteristics of the
viscoelastic-cored composite beam compared to
homogeneous beam and the possible benefits
over the homogenous beam when used as a
dynamic absorber are investigated and discussed.

II. ANALYSIS

The vibrating system of a beam depicted in
Fig.1 is considered for analyzing the praperties
of a composite beam dynamic absorber,

The main beam is clamped and excited by
trangverse displacement at both ends.

The absorber is attached to the center of the
main beam with a rod of relatively stiff material
within which no dynamics is assumed.
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The equation of motion of the main beam,
when assuming Bernouity-Euler heam, is written
as follows.
3w me 'y
5 j Bt B

Assume the solution

yix, t)=Y{x)e"!

Then,
2'Y ., ,
o " Y (2}
where,
I'I‘= mp 0)2
EPIP

The solution of eq.(2) becomes

Y {x}=C, coshnxr-4 C;cosnx+Cssinhnr-+ C,sinnx

{3
where, C;, C,,Cs and C4 constants are deter-
mined from the boundary conditions of the
main beam.

The forced vibration problem can be treated
as free vibration one considering the absorbing
force F acting on the midpoint of the main
beam as a boundary condition.

The main beam boundary conditions is

written as
oy _
81’. L’—-a 0
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where we can get F,. by analyzing the equa-
tion of motion of the composite absorber.

Fig. 2 shows the geometric structure and
coordinate system of the composite dynamic

absorber.
The equation of motion of the composite

beam, negleting the higher order effects like
rotary inertia, i.e, assuming Bernoulli-Euler
beam, is written as follows
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where b is the width of 1he composite beam
and i'is the transverse Inad including the mertia
force and
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. complex shear parameter

R=D.

Em ]1-:2 -+ Ec: hc.:

nondimensional geometric parameter
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1 ;
d= E “'Ir'p T hl_'g )+ hv

; thickness

1. .
[)1 = E “‘Lc, ]'lm “!’I‘.cz i’lc!zJ

. overall bending stiffness of the con-
straining elastic layer about the neutral
axis
G =Gt L +ig i

; complex shear modulus
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13l 2 Free body diagram

The composite beam is excited by the dis-
placement y(0,t} transmitted directly from the
primary system.

Treating this transmitted exciting displace-
ment as a boundary condition, we can consider
the problem as a free vibration one,

2
Putting P=-m, %:—V— we get the

following homogeneous equation.
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As both ends of the primary beam are forced
by same harmonic excitation uisplacement, we
can assume that the composite beam, which is
excited by the transmitted displacement from
the main beam, will show the synchronous
motion with the primary system.

So we can put

wig, t1=Wg)e™! {6}

From eq.(5) and eq.(6), we can get

' w atw
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The solution of eq.(7) can be put as
W (¢)=a, sinr & Tazcosr, ¢
Fa,e T dae™t rase™ttae {8)

1, 2, 3) is the root of the
following characteristic equation

where, 7:.(i =

Ma

bD.

r‘—g(1+R]r‘---W’{ ) (r—g)=0 (9

When we use relatively stiff material as the
connecting rvod, it is reasonable to comsider that
midpoint displacement of the main beam is
transmitted directly to the absorber.

Then the undetermined constants of
eq.(8) is obtained from the following boundary
conditions (i=1,..,,6)

WI0)=YI0)
W) _

EYR 0

BW(0)

2¢ 0
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The shear force of an arbitary point of the
composite beam can be get from the following
equation, 10)

Dt 2w o'w
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From eq.(10), the shear force at the root
position of the composite beam is written as

follows.
- _Dty W
V(0,0 == —Ga], te(14R)
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The vibration absorbing force acting on the
midpoint of the main beam becomes

Fo=— 2Vqe' {12

from the free body diagram of Fig. 2

Here we define the displacement transmis-
sibility T between exciting displacement w and
center displacement y(0,t) of the main beam
as a performance index.

Representing Fo with C; and C; coefficients
of e¢.(3)

Fosk(01 +Cz)eh': {13)
we get the transmissibility in terms of k as

follows

sin h{nlp) +sin (nlp)
cosh (alp }sin (nlp) + sinh (n)e) cos (nl;)

4k (1 —cosh(nlp) cos(nlp) / 2EpIpn®)

4
Because the transmissibility includes im-
plicitly the various interconnected parameters
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through the preceding many equations, we use
the numerical trial and error method io deter-

mine the optimal parameters.

i1, DESIGN EXAMPLE AND DISCUSSION

The transmissibility given as eg.(14) is
governed by the matching conditions of physical
and geometric parameters of the main and
absorber beam.

As shown in the analysis, many parameters
are related interdependently and so it is desirable
to use¢ nondimensionai parameters for deriving
generaj results.

But the dynamic characteristics of the com-
posite beam absorber unfortunately do not
allow it’s possibitity.

Therefore, we choose and fix the main
beam system with the following parameters
as an example and design the composite beam
dynamic absorber accordingly and discuss the

results,

me= 12,43 {kg/m)
he=3.5~10"% m;
Ee= 115> 10" (N/m®}
he=5 <107% {m)
lp=1.79X10"" (m*]

As the primary system is subjected to
symmetric modes, the mode numbers represent-
ed depict only the symmetric modes,

First, the effects of the absorber when used
for suppressing only the Ist resonance is analyz-
ed and the 1esuits is given in Fig.3.
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A& 3 Freguency response of (he transmissibility
for the composite beam absorber
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The parameter values of the absorber used

are

Gy=2.74x 10* (N/m?)
hey =1,75-107(m)

hee = 0.25 <10 ¥ (m?

he = 1+ 1077 (m)
E.=1.15x10" (N/m'}
m.=0.5325 (kg/m)

b —0.02(m)
fe—0.403 im)
8 =06

The physical and cross sectional geometric
parameters of the absorber appear in terms of
lumped form parameters g, R and D in eq.(4).

The tuning ratio, which gives the same
value to both peaks of the transmissibility in
the vicinity of the tuned frequency depends on
the damping factor § of damping layer.

Of all the tuning ratios and damping factors
satisfying above conditions, the one that give
the smallest transmissibility is chosen as the
optimal parameters.

Here, though the tuning of the absorber
is done with fixed g. R, only by changing absot-
ber length, the maximum transmissibility also
can be controlled by modifying g, R parameters.

We decided g, R parameters that give the
maximum loss fator.

Fig.4, which shows the case when using the

uniform beam absorber, is given for comparision,
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A4 Frequency response of the transmissibility
for the uniform beam absorber

In the case of tuning only near to the lst
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resonance, the composite beam absorber shows
-only similar performances to the uniform one.

But the composite absorber is favorable in
point of the availability of the material that
can fulfill the optimal condition.

Next, the possibility of simultaneous sup-
prerssion of several resonances is examined.

For this, the relationships between shear
modulus of the damping layer G, and absorber
length !. with fixed young’s modulus of the
constraining layer, which tune the absorber to
each resonance frequency of the main beam, is
calcufated and given in Fig.5.

0.2}
0.1 i A A '
190 5.0 amdt 5.10°  1.10
Ge(N/m?)

225 Relationship between 1 and G when wned
separately to ¢cach main resonance.

The figure shows several points which can
tune simuftaneously two or three resonance
frequencies.

One point at high G, gives the absorber
length which can tune simultaneously to 2nd,

3rd and 4th modes and other points at low G,

to Ist and also 2nd, 3rd or 4th. However, it is
noted that there is no parameter set of (i, and
ls for this system to be tuned simulataneously
more than two resonances including 1st mode.

Fig.6 represents the result of simultaneous
tuning of the absorber to 2nd, 3rd and 4th
résonance in the case of low G.
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Even when we tune the parameters to 1st
and 2nd mode, 3td or higher resonance can be
suppressed by the high damping effect,

So this composite beam absorber can be
used for controlling simultaneously more than

{wo resonances.

IV. CONCLUSION

The effectiveness of using the constrained
damping layer composite beam as a dynamic
vibration absorber is investigated.

Through theoretic analysis for the primary
beam with built-in ends, the following conclu-
stons are obtained.

* (1) It is not easy to find the material satisfying
the optimal condition for the parameters
when using the uniform absorber, but for
the composite beam absorber, it is relatively
easy to satisfy the requirement by suitable
structuring of constraining and damping
layers.

(2) By controlling the frequency which gives
the maximum loss factor, the absorber
that is effective in several resonances can be
designed.

(3) More than two resonance frequencies can
be suppressed by tuning the absorber simul-
taneously to several resonance frequencies.
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