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COMPACT GROUP ACTIONS ON ADMISSIBLE MANIFOLDS

EUN-SOOK KANG AND JUNG-SOOK SAKONG

Conner and Raymond [eR] proved that the only connected, compact
Lie groups that act effectively on a closed aspherical manifold are tori.
Subsequently, many generalizations have been obtained by enlarging
the class of spaces which enjoy some of the features of compact groups
acting on aspherical manifolds in several ways. A list of classes of
manifolds satisfying the aforementioned property can be found in
[LR].

To describe the main results, we need some notations and termino­
logies. Throughout this paper, M wiII be connected, oriented, closed
manifold, whose universal covering is denoted by M. Let G be a group
acting on M. We define a subset F(G) of G as the set of all elements
which have some lift to M of finite order. It wiII be shown that this
set is in fact a normal subgroup of G if the action of G on M is inner
(see below for a definition). An action of a compact Lie group G on
M is called inner if the induced homomorphism cjJ: G~Out (n) = Aut
(n) /Inn (n) is trivial, n=n1 (M). Recall that M is said to be admissible
if all periodic self homeomorphisms of the universal covering M of M
commuting with n=n1 (M) are elements of the center Z (n) of n.

Lee and Raymond proved the following implications hold: For M a
connected, oriented, closed manifold,

Admissible

~

Any effective finite inner action is abelian.

%
Any compact connected effective Lie group acting on M is a torus.
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In this paper, we formulate the admissibility in terms of F(G) for a
finite group G acting effectively and innedy. More importantly, we
found that F(G) bei~g central in G for every finite inner G implies
that M must satisfy,the last property. Of course this is weaker than
asking that any effective :finite inner action be abelian. More precisely,
we prove

THEOREM 1. M is admissible if and only if F(G) is trivial for every
finite group G acting effecttvely and innerly on M.

THEOREM 2. Suppose, for every}i1dte group G acting effectively and
innerly on M, peG) is central. Then any compact connected effective
Lie group acting on M is a torus.

Let M be a connected manifold and· let G be a group acting on M.
If p : M--"'M is a universal covering, we shall denote by E the group
of all homeomorphisms h : M--"'M covering those in G, i. e., ph= gp
f~r ~ome gEG. The groupE fits in the exact sequence

l--"'1Cl CM) --'"E--"'G--"'l.
Let cjJ : G--",Out(1C) be the abstract kernel for this extension. Then we
obtain an exact sequence

1--'"Z (n:) --"'CE (1C) --"'KercjJ--"'l
where n:=n:l(M), Z(1C) is the center and CE(1C) IS the centralizer of
n: in E [GLO; 2. 11
PROPOSITION 1. Let Gbe a finite group acting effectively on M. Suppose
the G-action is inner. Then

(i) F(G) is a normal subgroup of G,
(ii) G/F(G) is abelian.

Proof. Since the G-action is inner, G maps trivially into Out (n:).

Therefore, 1 --'" Z (n:) ~ CE(n:) ~ G --'" 1 is exact. This extension is
central. L~t m be the order of G. Then there is a homomoJ:'phism
ljJ: CE(1C)--",Z(n:), defined by ljJ(x)=xm, [GLO; 1.1J. Let t(CE(n:))
be the set of all elements of finite order in CE(n:). Then t(CE(n:))=
ljJ-lt(Z(n:)))is a normal subgroup of CE(n:) , and C:e(1C)/t(CE(n:)) is
torsion-free. Furthermore, t(CE(n:)) maps onto F(G)cG by p, sho
wing that F(G) is normal in G. This proves (i).

For (ii), observe that. 1--'" t (Z (1C)) --'" t(CE(n:)) --'" F(G) --'" 1 is exact,
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since p(t(CE(n») =F(G). Hence, we have a commutative diagram

1 1 1
J J J

1 --) t(Z(n» --) t(CE(n» --) F(G) --) 1
1 1 1

1 --) Zen) --) CE(n) --) G --) 1
111

1 --) Z(n)/t(Z(n» --) CE(n)/t(CE(n» --)G/F(G) --) 1
1 1 1
1 1 1

From the last row, CE(n)/t(CE(n» is a torsion-free central extension
of an abelian group Z(n)/t(Z(n» by the finite group G/F(G).
Applying [GLO; 1. 3J, we conclude that CE(n)/t(CE(n» and hence
G/ F(G) is abelian.

Proof of Theorem 1. If M is admissible, then clearly F(G) is trivial
for every G. For the converse, suppose that M is not admissible. Then
there exists a homeomorphism h of M so that

(a) h commutes with n,
(b) hk=id for some k>1, and
(c) hfI=Z(n).

Let p be the smallest integer so that hPEZ(n), 15;.p5;.k. Let k=dp.
We may assume p is a prime by choosing a power of h if necessary.
Then Zk= rh, h2, ••• , hk} is a subgroup of H(M) commuting with Jr.

Now Zk nn= {hP, h2p, ••• , hdP} ~Zd'

The action of Zk on M induces an effective action of Zk/ Zk nn~Zp
on M. Let E be the lifting of the Zp action on M so that 1 --) n--)

E --) Zp --) 1 is exact. By construction, E is generated by nand Zko

Furthermore, the abstract kernel Zp--)Out(n) of this exact sequence
is trivial, becaue Zk commutes with n. We conclude that the Zp
action on M is inner. Clearly, F(Zp) is Zp itself, which is not a trivial
group.

By Theorem 1, F(G) is trivial, and so G is abelian from (ii) of
Proposition 1. This gives an another proof of the result of Lee and
Raymond [LR].

COROLLARY. If a finite group acts on an admissible manifold effectively

- 2 9-



Eun-Sook Kang and Jung-Sook Sakong

and innerly, then it is abelian.

The following generalizes [GLO; 1.4] from the abelian to the nilpo­
tent case. It is crucial for a proof of Theorem 2.

PROPOSITION 2. If every finite subgroup of a compact connected Lie
group L is m-step nilpotent for a fixed m>O, then L is abelian.

Proof. Let Tr be a maximal torus (of rank r), NL(Tr) be its
normalizer in Land W=NL(Tr)/Tr be the Weyl group with n= I WI.
For any natural number k, (Zkn)r= {tETr ltkn=l} is a characteristic
subgroup of Tr. Hence the standard action of W on Tr restricts to
an action on (Zkn) r, giving the exact sequence of W-modules

i kn
o~ (Zkn) r ----> Tr---->' Tr~ o.

In cohomology, we have the exact sequence
i* (kn) *

H2(W;Zkn)r} ~H2(W; Tr) ~ H2(W; 'Tr).
Since IW\ =n, (kn) * is a trivial map so that i* is onto. There IS

[Wk] EH2(W; (Zkn)r) such that i*[Wk]= [NL(Tr)]. Then
o~ (Zkn)r ~ W k ~ W ----> 1

~ ~ ~ =

1 ~ Tr ~ NL(Tr) ~ W ~ 1
is commutative, and we have

W1c W 2c Wgc ... cNL(Tr).
Since Uk(Zkn)r is dense in Tr, UkWk is also dense in NL(Tr).

We give an argument for m=2. The general case is similar. Let
a, b, cENL(Tr). Then a=lim ai, b=lim bj, and c=lim Ck, where aiE Wj,
bjE Wj and CkE Wk for each i,j and k. Since [[-, -], -] : LXLXL
~L is a continuous map, we have [[a, b], c]= [[limai, lim bj], lim Ck]
=lim[[ai, bJ, Ck] =1. Hence NL(Tr) is nilpotent. The following Lemma
shows that G is abelian, finishing the proof.

LEMMA. Let L be a compact, connected Lie group. If L is not a
torus, then the normalizer of a maximal torus is not nilpotent.

Proof. Any connected compact Lie group L is of the form
L= (ToX~XL2X···XLn) / K

where To is a torus, L/s are simple, and K is a :finite subgroup of
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the center of L. Let L be the finite covering of L so that L= To X
L l XL2 X ... XLn• For a subgroup H of the maximal torus which is
closed and normal in L, it is known that the Weyl groups W(LIH)
and W(L) are isomorphic. See [Ad; 5.6J. Applying this fact twice,
we may assume that L=Ll XL2 X···XLn• This implies that W(L)=
WeLl) X W(L2) X ... X W(Ln). However, all the simple groups are
known to have nontrivial Weyl groups. We conclude that W(L) is
nontrivial. In fact, it is generated by "reflections".

Choose an element a of W(L) of order 2. It acts on the Lie algebra
of the maximal torus T of L as reflections along a linear subspace,
called a wall. Therefore, it has an eigen-value -1. Let a* (v) = -v.
We pick a lift aENL(T) of a. Consider the subgroup S of NL(T)
generated by {exp(tv) ItER}and a. Since a* leaves the line {tvltER}
invariant and a2E TT, S is an extension of either RI or SI by Z2 or
Z. Clearly, [v, aJ =2v, which shows that S is not nilpotent.

Proof of Theorem 2. Let L be a compact, connected Lie group
acting on M, and let G be any finite subgroup of L. Since L is
connected, the action of L on M is inner, hence so is the action of
G. By the hypothesis, F(G) is central in G. Now consider the exact
sequence

1-7 F(G) -7 G -7 ClF(G) -71.

By (ii) of Proposition 1, GIF(G) is abelian. We conclude that every
finite subgroup G of L is 2-step nilpotent. Now apply Proposition 2
to see that L is abelian.

EXAMPLE. The example [LR; 4. 8J shows that the converse of
Theorem 2 does not hold: M= (S2XSl) # (S2XSl) admits no
compact connected group action other than the circle action with fixed
points. Further, M admits a dihedral inner action, which is, of course,
not niIpotent.
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