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CLOSED SEMI-IDEALS IN A Ill-FACTOR

SA GE LEE, SUNG lE CHO and SEul\G-HYEOK KYE

1. Introduction

Throughout, M will be a fixed Ill-factor with normalized trace
T. A (nonempty) subset S of A1 is called a semi-ideal in A1 if
xSycS for all x, yEM.

In Section 2, we determine the class of all (norm) closed semi­
ideals in M. The height h(S) of a semi-ideals in M is defined by

h(S) =sup{z-(P) : PEP(S)},
where P(·) denotes the set of all projections in the set (.),
through this work. We say that h(S) is accessible if there is
PEP(S) such that z-(P) =h(S). Otherwise, it is called inaccessible
(cf. [7J Definition 2).

In Section 3, we describe the spectrum (J,(X) of xE/I;I, 0<£<1,
modulo the closed semi-ideal f" where f, is uniquely determined
as the closed semi-ideal in M whose height h(f,) is inaccessible
and h(f,) =t.

2. The closed semi-ideals

For every tE (0, 1], we put
1,= {xEM: z-(l(x»<t} and
f, =It~ the-norm closure of It,

where lex) denotes the Jeftsupport (projection) of xEM. It is
immediate to verify that I" ft are semi-ideals in M.

In what follows, H will be the underlying Hilbert space on
which operators of M act, and P(M) will be abbreviated by P.

PROPOSITION 2.1. Let xEM, O<t<1. The following conditions
are mutually equivalet.
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( i) XE!t.
(ii) If qEP and q(H)cx(H), then -r(q)<t.
(iii) If x is bounded below on P(H) for PEP, then -r(P)<t.
(iv) For every s>o, there is pEP such that IlxPII<s and

-r(1-P)<t.

Proof. (i)---?(ii). If we modify (D] Theorem 1) slightly, we
see that q=xy for some YEM. Then qE]" since ]t is a semi-ideal
in M. Let {qn} be a sequence in It such that IIq-qnll---?O. One can
easily check that the operator qnlq(H) : q(H)---?H is bounded below
for all sufficiently large n's. Let us fix one such n. Then qnq has
the kernel (l-q)(H) and has the closed range. Note that l(qnq)r-.J
r(qnq) in M, where r(·) denotes the right support of the element
(.), and that r(qnq) =q. Consequently, -r(q) =-r(r(qnq» =-r(l(qnq»
<-r(qn)<t, as desired.

(ii)---?(iii). Let pEP be given such that x is bounded below on
P(H). We put q=I(XP)EP. Then q(H)cx(H). By hypothesis
(ii), -r(q)<t. On the other hand, r(xp) =p, since ker(xp) =ker p.
It follows that -rep) =-r(r(xp» =-r(l(xP» =-r(q)<t.

(iii)---?(iv). Let E(·) be the spectral measure of Ixl. If we put
p=.E[O, s/2), then it is easily seen that p is a required one in
(iv), by a semilar argument as in the proof of ([5J Lemma 2.5).

(iv)---?(i). Let s(>O) be given arbitrary. By (iv), there is pEP
such that IIxP 11<s and I-PElt. Note that x(l- P)Elt. Now
Ilx-x(l-P)II=lIxPII<s. Hence XEI;=]t.

COROLLARY 2. 2. For every semi-ideal ]1> the height h(]t) is
inaccessible.

Proof. Clearly h(]t) =h(lt)=t. Assume contrary that -rep) =t
for some PEPC]t). By (i)---?(ii) of Proposition 2.1, -r(P)<t,
which is a contradiction.

LEMMA 2.3. A (norm) closed semi-ideal 5 of M is determined
by the projections contained in S.

Proof. We have to show the following: If 5;(i=1, 2) are two
closed semi-ideals in M such that P(SI) =P(52) , then 51=52•
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Let XES1• Let x=ulxl be the left polar decomposition of x and
E(·) be the spectral measure of Ixl. If we put en=E[l/n,=),
n=1,2,···, then

(*) Illxl-lxlenll=lllxIE[O, l/n)II<l/n~O.
Here IxlenESJ, since Ixl =U*XES1• Note that Ixlen has the closed
range, so that l( Ixl en) (H) = (Ix! e.)(H)c Ixl (H). By the modified
version of the Douglas result (DJ Theorem 1) mentioned already,
l(lxlen)=lxly for some yEM. Hence l(lx/en)ES1• Now l(Ix/en)r-v
r( Ix Ien) =en, which implies that enEP(SI), since two equivalent
projections in a finite von Neumann algebra are unitarily equival­
ent. As we have assumed that P(SI) = P(S2), we have enEP(S2)
and hence IxlenES2. By (*), IxlES2 and consequently XES2. We
have shown that SI CS2• The reverse inclusion is proven by the
symmetric argument.

LEMMA 2.4. If ] is a (norm) closed nontrivial ({O}~]~M)

semi-ideal of M such that he]) is inaccessible, then there is a
unique tE(O, 1] such that ]=]t.

Proof. To see the uniqueness, let 0<t1<t2<1. Find pEP such
that 'rep) =t1• Then Pt1=]t, by Corollary 2.2, while pelt,. Hence
]t:~]t,.

Now let] be a closed semi-ideal of M such that to} ~]~M
and he]) is inaccessible. Put t=h(]). Since P(])* to} (Lemma
2.3), we see that tE(O, 1]. By inaccessibility of he]), P(])c
P(lt)cP(]t), which, in turn, implies that ]c]t (Lemma 2.3).
To get ]tc], let PEP(]t). Then 'C'(P)<t, as we saw already.
By definition of t, 'r(P)<t(q) for some qEP(]). Thus, pr-vql<q
for some qIEP. Since ql =qlqE], we have that PE]. Hence
P(]t)cP(]), and consequently ]tc] (Lemma 2.3).

For every tE [0, 1], let us define
Kt= {xEM: 'C'(l(x»<t}.

One can easily show that Kt is a norm closed semi-ideal of M and
that h(Kt ) is accessible. The converse holds as in the following
lemma. We omit the proof, as it is dealt with the similar way as
the case of ]t's.
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LEMMA 2.5. K is a closed semi-ideal of M whose height h(K)
is accessible if and only if there is a unique tE[D,1] such that
K=Kt.

In ([3J Definition 2.1), the t-th singular number of -r-measurable
operator T is defined by

,utCT)=inf{IITplI : pEP and -r(l-P)<t},
where tE(O, 00).
When xEM, tE[D, 1], Proposition 2.4 of [3J implies that

,u/x) =dist(x, Kt),
where dist denotes the distance.

For xEM, tE(D, 00), let us define
vtCx) = inf {lIxplI : pEP and -r(l-P)<t}.

The next two propositions are analogues of Proposition 2. 2 and
Proposition 2. 4 in [3J, respectively. We shall omit their proofs
which go parallel to the corresponding ones in [3J.

PROPOSITION 2.6. For XEX, tE(O, 00), we have
vt(x) =inf{s>O : xs(x)<t},

where A/x) =-r(E(s, 00)) and E(·) is the spectral measure for Ix I-

PROPOSITION 2.7. For xEM, tE(D, 1], we have

).:t(x) =dist(x, It).

REMARK 2.8. For every tE(D, 00), xEM, it is clear that ,utCx)<
vt(x). When tE(O, 1], 1>tCx) is right continuous at t if and only if
vtCx) =,u/i). Because of this fact and similarity between definitions
of ,ut(x) and vt(x), many assertions in [3J, for example, Lemma
2.5 and Proposition 2. 7 there, can be formulated in terms of ,utCx).

3. Invertibility modulo ~

Let S be a closed semi-ideal of M and xEM. We say that x is
left invertible in M modulo S if there is yEM such that yx-IES.
An element xEM is called invertible in M modulo ·~S if'- 'there is
yEM such that yx-IES and xy-IES.

If K is a closed subspace of Hand p is the projection onto K
such that pEM, we shall also write KEM and -r(K) to mean
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rep). The next two lemmas are von Neumann algebra version of
Lemma 1. 1 and 1. 2 in [2J, respectively. To prove Lemma B, one
has to apply the parallelogram law for projections in M. We omit
the obvious proofs.

LEMMA A. Let xEM. For every e>O, there is a closed subspace
K of H such that kernel(x)cK, KEM,

Ilx~ll<ell~ll, for all ~EK and
Ilx~ll>ell~ll, for all ~EK.L.

(When K = {a}, the first inequality is vacuous. )

LEMMA B. Let xEM. For e>O, suppose that K is a closed
subspace of H such that KEM, Ilx~ll<ell~11 for all ~EK with
~=FO, and that L is a closed subspace of H such that LEM,
Ilx~ll>el'~11 for all ~EL-'-. Then

-r:(K)<-r:(L),
-r:(L.L) <-r:(K -'-).

PROPOSITION 3.1. For xEM, tE(O, 1], the following conditions
are mutually equivalent.

( i ) x is left invertible modulo It.
( ii) x is left invertible modulo Jt.
(iii) x is bounded below on P(H) for some PEP with r(1- P)<t.
(iv) The nullity ))(x)<t, where ].I(x) =-r:(kernel(x)).
( v) x is intertible modulo It.
(vi) x is invertible modulo Jt.

Proof. (i)~(ii). Trivial, since ItcJ,.
(ii)~(iii). Assume that yx- IEJt for some yEM. Note that

y=FO. By Lemma A, there is a closed subspace K of H such that
KEM,

Ilyx~II<0/2)11~11 for ~EK with ~=FO

and liyx~II>0/2)II~II for all ~EK-'-.

Thus Ilx~II>(1/(21Iyll))II~II, for all ~EK-'-. It suffices to show that
rCK) <to For all ~EK, we have

II (/-yx)~II>II~II-llyx~II>II~II-(1/2) II~II == 0/2) II~II,

which shows that I-yx is bounded below on K. By Proposition
2.1, r(K)<t, as desired.
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(iii)~(iv). Let x be bounded below· on P(H) for some PEP
with z-(l-P)<t. Choose e>O such that IIx~1I2ell~1I for all t;EP(H).
Put L=(l-P)(H). With these·e andL, let Kbeaclosedsubspace
satisfying Lemma A. By Lemma B, we have -r(K)<-r(L)<t.
Since kernel(x)cK (See Lemma A), we get the desired conclusion.

(iv)~(iii). Assume that lJ(x)<t. Let E(·) be the spectral
measure of Ixl. Since lim-r(E[O,e»=v(x), there is a positive real

e-O

number e such that -r(E[O,e»<t. We put p=E[e, 00). Then
-r(l-P)<t, while x is bounded below on P(H).

(iii)~(i) Let pEP be as in (iii). We can find yEM such that
yxt;=t;, for all t;EP(H)

and yn=O, for all 7)E[x(P(H»J.L.
Then yxp=p, so yx-I=(yx-I)(l-P)Elt,
since I-PElt.

(v)~(vi) and (vi)~(ii) are clear.
It remains to prove the implication (iv)~(v). As in the proof of
(iv)~(iii) we put pEE[e, 00), where e<O, E(·) is the spectral
projection of Ix I and -r(l-P) <to Let us' find yEM just as in the
proof of (iii)~(i) so that yx-IElt. We have to show that this
y also satisfies that xy-lEIt.

Let us put L=x(E[e, oo)(H», which is a closed subspace of H
such that LEM and -r(L)=-r(P)=l-t. For every 7) EH, we write
7)=7)lE!37)Z, where 7hEL and 712EL.L. Thus, 7h=x~ for some ~EP

(H), and xY7)=XY7)l+XY7)Z=xyx~ (noticing y in the proof of (iii)~

(i) vanishes on L\ while yx~=~) =X~=7)l. This implies that xyq=
q, where q is the projection onto L. It follows that xy - I=
(xy-I) (l-q) EL, since -r(q)=-r(P) and hence -r(l-q)=-r(l-P)<t.

For xEM, tE(O, 1], let us put
o"t(x) = {2EC : V(X-2)2t}.

By Proposition 3.1, 2EO't(X) if and only if X-A is not invertible
modulo It. In particular, x has no eigenvalue if and only if x-A
is invertible modulo It for every tE(O, 1] and any 2EC.

PROPOSITION 3.2. The function xEM~~(X)E[O,1] is upper semi­
continuous with respect to the norm topology of M.

Proof. To prove the contraposition, let tE[O, l]; .{x,,} cM,
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V(Xn»t and Xn-.X in norm. It suffices to prove that v(x»t.
Assume contrary that v(x)<t. By Lemma 3.1, there is pEP and
a positive number e such that r(l-P)<t and Ilxp~ll>eIIP~11 for all
~EH. Then, for all ~EH,

IlxP~11 = IlxP~II-11 (Xn-x)P~11

>eIIP~II-llx-xIIIIP~11

--= (e-Ilxn - xii) IIP~II,

which shows that X n is bounded below on P(H) for a sufficiently
large integer n. By Lemma 3. 1 again, we then have v(xn ) <t, for
such n, which is a contradiction as desired.

LEMMA 3.3. Let xEM, tE (0. 1J and 2EC. If ))t(x)<I2 I, then
x-2 is invertible in M modulo Jt.

Proof. Since ))t((l/121)x)<1, we may prove the following: If
))t(x)<l, then x-I is bounded below on P(H) for some pEP with
r(l-p)<t (Proposition 3.1). Since )),(x)=inf{llxpll : pEP: r(l-p)
<t}, there is pEP such that IlxPII<l and T(l-P)<t. Then for
all ~EP(H) with II~II = 1,

I1 (x--1)~II>II~II-llx~ll-= 11~11-llxP~11

>11~11-llxPIIII~11

= (l-llxPII) II~II,

while 1-llxpll>0. By Proposition 3.1, X-lIS invertible in M
modulo JIl as desired.

COROLLARY 3.4. For xEM, tE (0, 1J, O't(x) is a compact subset
of C contained in the closed disk about the origin with radius
))t(x).

Proof. It is immediate from Proposition 3.2 and Lemma 3.3.
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