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CLOSED SEMI-IDEALS IN A II,-FACTOR

Sa Ge Lee, Sung Je Cuo and Seunc-Hyeox Kye

1. Introduction

Throughout, M will be a fixed II;-factor with normalized trace
. A (nonempty) subset S of M is called a semi-ideal in M if
xSy S for all x, yeM.

In Section 2, we determine the class of all (norm) closed semi-
ideals in M. The height 2(S) of a semi-ideals in M is defined by

h(S)=sup{z(p) : p=P(S)},
where P(-) denotes the set of all projections in the set (-),
through this work. We say that A(S) is accessible if there is
p=P(S) such that 7(p)=h(S). Otherwise, it is called inaccessible
(cf. [7] Definition 2).

In Section 3, we describe the spectrum ¢,(X) of x&M, 0<{<1,
modulo the closed semi-ideal J,, where J, is uniquely determined
as the closed semi-ideal in M whose height Z(/,) is inaccessible
and h(J,)=t.

2. The closed semi-ideals

For every t=(0, 1], we put
L={x&M : c(I(x))<t} and
J.=1,, the norm closure of I,
where /(x) denotes the 'left support (projection) of x&M. It is
immediate to verify that I, J, are semi-ideals in M.
In what follows, H will be the underlying Hilbert space on
which operators of M act, and P(M) will be abbreviated by P.

Proposition 2. 1. Let x=M, 0<t<l. The following conditions
are mutually equivalet.
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(i) x€/.

(ii) If q=P and q(H)Cx(H), then t(q)<t.

(iii) If x is bounded below on p(H) for p=P, then t(p)<t.
(iv) For every €>0, there is pEP such that |xpll<le and

(1)<t

Proof. (i)—(ii). If we modify ([1] Theorem 1) slightly, we
see that g=xy for some y&M. Then g=], since J; is a semi-ideal
in M. Let {g.,} be a sequence in I, such that {lg—g,|l—0. One can
easily check that the operator ¢.|q(H) : g(H)—H is bounded below -
for all sufficiently large #’s. Let us fix one such #. Then ¢.g has
the kernel (/—¢)(H) and has the closed range. Note that /(g.g)~
7(g.q) in M, where r(-) denotes the right support of the element
(+), and that 7(¢.g)=gq. Consequently, z(q)=7(r(g.q))=r((g.9))
<r(q.)<t, as desired.

(ii)—(iii). ‘Let p=P be given such that x is bounded below on
p(H). We put g=I(xp)<P. Then g(H)Cx(H). By hypothesis
(ii), z(g)<t. On the other hand, r(xp)=p, since ker(xp)=Kker p.
It follows that z(p)=t(r(xp))=r(xp))=7(g)<t.

(iii)—(iv). Let E(-) be the spectral measure of |x|. If we put
p=E[0,¢/2), then it is easily seen that p is a required one in
(iv), by a semilar argument as in the proof of ([5] Lemma 2.5).

(iv)—(i). Let e(C>0) be given arbitrary. By (iv), there is p=P
such that |xpll<<e and I—pcl. Note that x(I—p)El. Now
lx—x(I—p)li=llxpll<le. Hence x<I; =]..

CoroLLARY 2.2. For every semi-ideal [, the height h(J,) is
inaccessible.

Proof. Clearly h(Jjt) =h(I,)‘=t. Assume contrary that z'( P =t
for some p=P(J,). By ({)—({i) of Proposition 2.1, z(p)<¢,
which is a contradiction.

Lemma 2.3. A (norm) closed semi-ideal S of M is determined
by the projections contained in S.

Proof. We have to show the following: If S;(f=1,2) are two
closed semi-ideals in M such that P(S;)=P(S,), then S;=S,.
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Let x=S,. Let x=u|x| be the left polar decomposition of x and
E(-) be the spectral measure of |x{. If we put e,=FE[1l/n, <o),
n=1,2,+-, then

™) x| =Ixlell=lx| EL0, 1/n)[|<1/n—0.

Here |x|e.=S,, since |x|=u*x&S,. Note that |x|e, has the closed
range, so that [(|xle.)(H)=(lxle.)(H)C|x|(H). By the modified
version of the Douglas result ([1] Theorem 1) mentioned already,
[(|x]e.) = x|y for some yeM. Hence I(|x|e,)ES;. Now [(|%x]|e,)~
r(lx)e,) =e, which implies that e,&=P(S;), since two equivalent
projections in a finite von Neumann algebra are unitarily equival-
ent. As we have assumed that P(S;)=P(S,), we have e,=P(S,)
and hence |x|e,&S,. By (*), |x|&S, and consequently x&S,. We
have shown that S5,CS;. The reverse inclusion is proven by the
symmetric argument,

Lemma 2.4, If J is a (norm) closed nontrivial ({0}&]JSM)
semi-ideal of M such that h(]J) is inaccessible, then there is a
unique t<(0, 1] such that J=].

Proof. To see the uniqueness, let 0<¢,<t,<1. Find p=P such
that z(p)=?;. Then p&], by Corollary 2.2, while p&],. Hence
J ST,

Now let J be a closed semi-ideal of M such that {0}&J&M
and 2(J) is inaccessible. Put t=h(J). Since P(J)=#+{0} (Lemma
2.3), we see that t&(0,1]. By inaccessibility of A(J), P(J)C
P(,)cP(J,), which, in turn, implies that JJ, (Lemma 2.3).
To get J.CJ, let p=P(],). Then z(p)<i, as we saw already.
By definition of ¢, z(p)<t(g) for some g=P(J). Thus, p~g,<q
for some ¢,=P. Since ¢,=¢,q=], we have that pe/J. Hence
P(JH)CP(J), and consequently J,cJ (Lemma 2. 3).

For every [0, 1], let us define
K={xeM : t(I(x))<i}.
One can easily show that K, is a norm closed semi-ideal of M and
that #(K,) is accessible. The converse holds as in the following
lemma, We omit the proof, as it is dealt with the similar way as
the case of J,'s.
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Lemma 2.5. K is a closed semi-ideal of M whose height h(K)
is accessible if and only if there is a unique t<[0,1] such that
K=K,

In ([3] Definition 2.1), the f-th singular number of z-measurable
operator T is defined by
p(T) =inf (|| Tp|| : p&P and v(1—p)=t},
where t= (0, ©).
When x=M, t<[0,1], Proposition 2.4 of [3] implies that
w(x) =dist(x, K,),
where dist denotes the distance.
For x&M, t=(0, ), let us define
v(x) =inf{||xp]| : pP and z(1—p)<7}.
The next two propositions are analogues of Proposition 2.2 and
Proposition 2.4 in [3], respectively. We shall omit their proofs
- which go parallel to the corresponding ones in [3].

Prorposttion 2.6. For x=X, t=(0, ), we have
v (%) =inf{s>0 : ,(x)<t},
where A(x) =t (E(s, 0)) and E(-) is the spectral measure for |x|.

Prorosition 2.7. For x&=M, t<(0, 11, we have

v (%) =dist(x, J.).

Remark 2.8. For every t<=(0, ‘0‘0), x&=M, it is clear that u,(x)<
v(x). When £t=(0, 11, »(x) is right continuous at ¢ if and only if
v(x) =p(x). Because of this fact and similarity between definitions
of #(x) and v(x), many assertions in [3], for example, Lemma
2.5 and Proposition 2.7 there, can be formulated in terms of p,(x).

3. Invertibility modulo J;

Let S be a closed semi-ideal of M and x&M. We say that x is
left invertible in M modulo S if there is y=M such that yx—I<S.
An element x&M is called invertible in M modulo?S if‘there is
yEM such that yx—I<S and xy—I<S.

If K is a closed subspace of H and p is the projection onto K
such that p&M, we shall also write K&M and z(K) to mean
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7(p). The next two lemmas are von Neumann algebra version of
Lemma 1.1 and 1.2 in [2], respectively. To prove Lemma B, one

has to apply the parallelogram law for projections in M. We omit
the obvious proofs.

Lemma A, Let x&M. For every e>0, there is a closed subspace
K of H such that kernel(x) K, KeM,
&l <eli€ll, for all EEK and
llx&li=ell&ll, for all E&K™.
(When K={0}, the first inequality is vacuous.)

Lemma B. Ler x&M. For >0, suppose that K is a closed
subspace of H such that KM, ||x§|1<eli§ll for all E&K with
0, and that L is a closed subspace of H such that LeM,
lx€lizelléll for all E&L*. Then

t(K)=r(L),
(L) <7 (K™*).

Prorosition 3.1. For x&M, t=(0,1], the following conditions
are mutually equivalent.

(i) «x is left invertible modulo I..

(ii) x is left invertible modulo J..

(iii) x is bounded below on p(H) for some p=P with t(1—p)<t.

(iv) The nullity v(x)<t, where v(x)=r(kernel(x)).

(v) x is intertible modulo I,

(vi) x is invertible modulo J..

Proof. (i)—(ii). Trivial, since L.C]J.

(ii)— (iii). Assume that yx—I<], for some y&M. Note that
y70. By Lemma A, there is a closed subspace K of H such that
KeM,

lyxEll<<(1/2)1I€]] for §EK with £50
and i yx&ll=(1/2) 1]l for all E&K+.
Thus ||lx&l|=(1/CIyID)IEN, for all E&K+. It suffices to show that
7(K)<t. For all §&K, we have
(T yx)Ell =€l —lyx&ll =€ — (1/2) 1181 = (1/2)1I€ll,
which shows that I-yx is bounded below on K., By Proposition
2.1, 7(K)<t, as desired,
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(ili)—>(iv). Let x be bounded below on p(H) for some p=P
with z(1—p)<¢. Choose >0 such that |[x&l|>ell&]| for all E&p(H).
Put L=(1—p)(H). With these ¢ and L, let K be a closed subspace
satisfying Lemma A. By Lemma B, we have ¢(K)<z(L)<t.
Since kernel(x)CK (See Lemma A), we get the desired conclusion.

(iv)—>(iii). Assume that »(x)<t. Let E(-) be the spectral
measure of [x|. Since 151151 z(ET0,8))=v(x), there is a positive real

number & such that 7(E[0,¢))<t. We put p=FEfe o), Then
7(1—p)<t, while x is bounded below on p(H).
(iii)— (i) Let p=P be as in (iii). We can find y=M such that
yx&=§&, for all ép(H)

and yn=0, for all p[x(p(H))I".
Then yxp=p, so yx—I=(yx—I)(I-p)<l,
since I—pel.

(v)—(vi) and (vi)—(ii) are clear.
It remains to prove the implication (iv)—(v). As in the proof of
(iv)—(iii) we put pEET[e, ), where &0, E(-) is the spectral
projection of |x| and z(1—p)<t. Let us find y=M just as in the
proof of (iii)—(i) so that yx—I=l. We have to show that this
y also satisfies that xy—I<1,.

Let us put L=x(E[e, c0)(H)), which is a closed subspace of H
such that LEM and (L) =7(p)=1—f. For every nEH, we write
=107, where p,&L and p,=L*. Thus, 7,=x§ for some &=p
(H), and xyp=xynp,+xyp.=xyxE (noticing y in the proof of (iii)—
(i) vanishes on L*, while yx&§=§&)=x&=v,. This implies that xyq=
g, where g is the projection onto L. It follows that xy—I=
(xy—I)(I—-¢)E1, since 7(g)=7(p) and hence t(1—g) =r(1—p)<t

For x=M, t=(0,1], let us put
o.(x)={2C : v(x—A)>t}.
By Proposition 3.1, A<0.(x) if and only if x—2 is not invertible
modulo J,. In particular, x has no eigenvalue if and only if x—2
is invertible modulo J, for every t<(0, 1] and any 1=C.

Prorosition 3.2. The function x=M—v(x)<(0, 1] is upper semi-
continuous with respect to the norm topology of M.

Proof. To prove the contraposition, let (<[00, 1]; - {x.JCM,

'_'72'___
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v(x,)>t and x,—x in norm. It suffices to prove that w(x)>f.
Assume contrary that v(x)<¢. By Lemma 3.1, there is p&P and
a positive number ¢ such that z(1—p)<t and ||xp&||>el|p&ll for all
§=H. Then, for all é&H,
xp&ll = llxp&ll — 1| (xa—x) PE]]

=el| p&ll—llx— x| p&lI

= (e~ llx.—xIDIIPEI,
which shows that x, is bounded below on p(H) for a sufficiently
large integer n. By Lemma 3.1 again, we then have v(x,)<f, for
such #, which is a contradiction as desired.

Lemma 3.3. Let xM, t=(0.1] and 2=C. If v (x)<l|Al, then
x—2 1s invertible in M modulo J..

Proof. Since v, ((1/12])x)<1, we may prove the following: If
v,(x)<1, then x—1I is bounded below on p(H) for some p&P with
7(1—p)<t (Proposition 3.1). Since v,(x)=inf{||xpll : p=P 1 z(1—p)
<t}, there is p&P such that |lxpl|<{1 and z(1—p)<¢. Then for
all é&p(H) with ||&]]=1,

(- DENZ=EN—1IxE] = 11E —1lxp&ll
=l = llxplllI €]l
=(1—lixpl) [IEll,
while 1-—1xpl|>0. By Proposition 3.1, x—1 is invertible in M
modulo [, as desired.

CoroLLaRY 3.4, For x&M, t<(0,1], o.(x) is a compact subset
of C contained in the closed disk about the origin with radius

v (x).

Proof. It is immediate from Proposition 3.2 and Lemma 3. 3.
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