CLOSED SEMI-IDEALS IN A II₁-FACTOR

SA GE LEE, SUNG JE CHO and SEUNG-HYEOK KYE

1. Introduction

Throughout, M will be a fixed II_1 -factor with normalized trace τ . A (nonempty) subset S of M is called a semi-ideal in M if $xSy \subset S$ for all $x, y \in M$.

In Section 2, we determine the class of all (norm) closed semiideals in M. The height h(S) of a semi-ideals in M is defined by $h(S) = \sup\{\tau(p) : p \in P(S)\},$

where $P(\cdot)$ denotes the set of all projections in the set (\cdot) , through this work. We say that h(S) is accessible if there is $p \in P(S)$ such that $\tau(p) = h(S)$. Otherwise, it is called inaccessible (cf. [7] Definition 2).

In Section 3, we describe the spectrum $\sigma_t(X)$ of $x \in M$, $0 < t \le 1$, modulo the closed semi-ideal J_t , where J_t is uniquely determined as the closed semi-ideal in M whose height $h(J_t)$ is inaccessible and $h(J_t) = t$.

2. The closed semi-ideals

For every $t \in (0, 1]$, we put

 $I_t = \{x \in M : \tau(l(x)) < t\}$ and $J_t = I_t$, the norm closure of I_t ,

where l(x) denotes the left support (projection) of $x \in M$. It is immediate to verify that I_t , J_t are semi-ideals in M.

In what follows, H will be the underlying Hilbert space on which operators of M act, and P(M) will be abbreviated by P.

Proposition 2.1. Let $x \in M$, 0 < t < 1. The following conditions are mutually equivalet.

Received May 30, 1988.

Supported by a grant from KOSEF, 1987.

- (i) $x \in J_t$.
- (ii) If $q \in P$ and $q(H) \subset x(H)$, then $\tau(q) < t$.
- (iii) If x is bounded below on p(H) for $p \in P$, then $\tau(p) < t$.
- (iv) For every $\varepsilon > 0$, there is $p \in P$ such that $||xp|| < \varepsilon$ and $\tau(1-p) < t$.
- Proof. (i) \rightarrow (ii). If we modify ([1] Theorem 1) slightly, we see that q=xy for some $y\in M$. Then $q\in J_t$, since J_t is a semi-ideal in M. Let $\{q_n\}$ be a sequence in I_t such that $||q-q_n||\rightarrow 0$. One can easily check that the operator $q_n|q(H):q(H)\rightarrow H$ is bounded below for all sufficiently large n's. Let us fix one such n. Then q_nq has the kernel (I-q)(H) and has the closed range. Note that $l(q_nq)\sim r(q_nq)$ in M, where $r(\cdot)$ denotes the right support of the element (\cdot) , and that $r(q_nq)=q$. Consequently, $\tau(q)=\tau(r(q_nq))=\tau(l(q_nq))$ $\leq \tau(q_n) < t$, as desired.
- (ii) \rightarrow (iii). Let $p \in P$ be given such that x is bounded below on p(H). We put $q = l(xp) \in P$. Then $q(H) \subset x(H)$. By hypothesis (ii), $\tau(q) < t$. On the other hand, r(xp) = p, since $\ker(xp) = \ker p$. It follows that $\tau(p) = \tau(r(xp)) = \tau(l(xp)) = \tau(q) < t$.
- (iii) \rightarrow (iv). Let $E(\cdot)$ be the spectral measure of |x|. If we put $p=E[0,\varepsilon/2)$, then it is easily seen that p is a required one in (iv), by a semilar argument as in the proof of ([5] Lemma 2.5).
- (iv) \rightarrow (i). Let ε (>0) be given arbitrary. By (iv), there is $p \in P$ such that $||xp|| < \varepsilon$ and $I-p \in I_t$. Note that $x(I-p) \in I_t$. Now $||x-x(I-p)|| = ||xp|| < \varepsilon$. Hence $x \in I_t = I_t$.

COROLLARY 2.2. For every semi-ideal J_t , the height $h(J_t)$ is inaccessible.

Proof. Clearly $h(Jt) = h(I_t) = t$. Assume contrary that $\tau(p) = t$ for some $p \in P(J_t)$. By (i) \rightarrow (ii) of Proposition 2.1, $\tau(p) < t$, which is a contradiction.

Lemma 2.3. A (norm) closed semi-ideal S of M is determined by the projections contained in S.

Proof. We have to show the following: If $S_i(i=1,2)$ are two closed semi-ideals in M such that $P(S_1) = P(S_2)$, then $S_1 = S_2$.

Let $x \in S_1$. Let x = u|x| be the left polar decomposition of x and $E(\cdot)$ be the spectral measure of |x|. If we put $e_n = E[1/n, \infty)$, $n = 1, 2, \dots$, then

(*) $|||x| - |x|e_n|| = |||x|E[0, 1/n)|| \le 1/n \to 0.$

Here $|x|e_n \in S_1$, since $|x| = u^*x \in S_1$. Note that $|x|e_n$ has the closed range, so that $l(|x|e_n)(H) = (|x|e_n)(H) \subset |x|(H)$. By the modified version of the Douglas result ([1] Theorem 1) mentioned already, $l(|x|e_n) = |x|y$ for some $y \in M$. Hence $l(|x|e_n) \in S_1$. Now $l(|x|e_n) \sim r(|x|e_n) = e_n$, which implies that $e_n \in P(S_1)$, since two equivalent projections in a finite von Neumann algebra are unitarily equivalent. As we have assumed that $P(S_1) = P(S_2)$, we have $e_n \in P(S_2)$ and hence $|x|e_n \in S_2$. By (*), $|x| \in S_2$ and consequently $x \in S_2$. We have shown that $S_1 \subset S_2$. The reverse inclusion is proven by the symmetric argument.

Lemma 2.4. If J is a (norm) closed nontrivial $(\{0\} \subseteq J \subseteq M)$ semi-ideal of M such that h(J) is inaccessible, then there is a unique $t \in (0, 1]$ such that $J = J_t$.

Proof. To see the uniqueness, let $0 < t_1 < t_2 \le 1$. Find $p \in P$ such that $\tau(p) = t_1$. Then $p \notin J_{t_1}$ by Corollary 2.2, while $p \in J_{t_2}$. Hence $J_{t_1} \subseteq J_{t_2}$.

Now let J be a closed semi-ideal of M such that $\{0\} \subseteq J \subseteq M$ and h(J) is inaccessible. Put t=h(J). Since $P(J) \neq \{0\}$ (Lemma 2.3), we see that $t \in \{0, 1\}$. By inaccessibility of h(J), $P(J) \subset P(I_t) \subset P(J_t)$, which, in turn, implies that $J \subset J_t$ (Lemma 2.3). To get $J_t \subset J_t$, let $p \in P(J_t)$. Then $\tau(p) < t_t$, as we saw already. By definition of t_t , $\tau(p) < t(q)$ for some $q \in P(J)$. Thus, $p \sim q_1 \leq q$ for some $q_1 \in P$. Since $q_1 = q_1 q \in J_t$, we have that $p \in J_t$. Hence $P(J_t) \subset P(J_t)$, and consequently $J_t \subset J_t$ (Lemma 2.3).

For every $t \in [0, 1]$, let us define

$$K_t = \{x \in M : \tau(l(x)) \leq t\}.$$

One can easily show that K_t is a norm closed semi-ideal of M and that $h(K_t)$ is accessible. The converse holds as in the following lemma. We omit the proof, as it is dealt with the similar way as the case of I_t 's.

Lemma 2.5. K is a closed semi-ideal of M whose height h(K) is accessible if and only if there is a unique $t \in [0, 1]$ such that $K = K_t$.

In ([3] Definition 2.1), the t-th singular number of τ -measurable operator T is defined by

$$\mu_t(T) = \inf\{||Tp|| : p \in P \text{ and } \tau(1-p) \leq t\},$$

where $t \in (0, \infty)$.

When $x \in M$, $t \in [0, 1]$, Proposition 2.4 of [3] implies that $\mu_t(x) = \operatorname{dist}(x, K_t)$,

where dist denotes the distance.

For $x \in M$, $t \in (0, \infty)$, let us define

$$\nu_t(x) = \inf\{||xp|| : p \in P \text{ and } \tau(1-p) < t\}.$$

The next two propositions are analogues of Proposition 2.2 and Proposition 2.4 in [3], respectively. We shall omit their proofs which go parallel to the corresponding ones in [3].

Proposition 2.6. For $x \in X$, $t \in (0, \infty)$, we have $v_t(x) = \inf\{s \ge 0 : \lambda_s(x) \le t\}$,

where $\lambda_s(x) = \tau(E(s, \infty))$ and $E(\cdot)$ is the spectral measure for |x|.

Proposition 2.7. For $x \in M$, $t \in (0, 1]$, we have

$$\nu_t(x) = dist(x, J_t).$$

REMARK 2.8. For every $t \in (0, \infty)$, $x \in M$, it is clear that $\mu_t(x) \le \nu_t(x)$. When $t \in (0, 1]$, $\nu_t(x)$ is right continuous at t if and only if $\nu_t(x) = \mu_t(x)$. Because of this fact and similarity between definitions of $\mu_t(x)$ and $\nu_t(x)$, many assertions in [3], for example, Lemma 2.5 and Proposition 2.7 there, can be formulated in terms of $\mu_t(x)$.

3. Invertibility modulo J_i

Let S be a closed semi-ideal of M and $x \in M$. We say that x is left invertible in M modulo S if there is $y \in M$ such that $yx-I \in S$. An element $x \in M$ is called invertible in M modulo S if there is $y \in M$ such that $yx-I \in S$ and $xy-I \in S$.

If K is a closed subspace of H and p is the projection onto K such that $p \in M$, we shall also write $K \in M$ and $\tau(K)$ to mean

 $\tau(p)$. The next two lemmas are von Neumann algebra version of Lemma 1.1 and 1.2 in [2], respectively. To prove Lemma B, one has to apply the parallelogram law for projections in M. We omit the obvious proofs.

Lemma A. Let $x \in M$. For every $\varepsilon > 0$, there is a closed subspace K of H such that $kernel(x) \subset K$, $K \in M$,

$$||x\xi|| < \varepsilon ||\xi||$$
, for all $\xi \in K$ and $||x\xi|| \ge \varepsilon ||\xi||$, for all $\xi \in K^{\perp}$.

(When $K = \{0\}$, the first inequality is vacuous.)

Lemma B. Let $x \in M$. For $\varepsilon > 0$, suppose that K is a closed subspace of H such that $K \in M$, $||x\xi|| < \varepsilon ||\xi||$ for all $\xi \in K$ with $\xi \neq 0$, and that L is a closed subspace of H such that $L \in M$, $||x\xi|| \ge \varepsilon ||\xi||$ for all $\xi \in L^+$. Then

$$\tau(K) \leq \tau(L),$$

 $\tau(L^{\perp}) \leq \tau(K^{\perp}).$

Proposition 3.1. For $x \in M$, $t \in (0, 1]$, the following conditions are mutually equivalent.

- (i) x is left invertible modulo I_t .
- (ii) x is left invertible modulo J_t .
- (iii) x is bounded below on p(H) for some $p \in P$ with $\tau(1-p) < t$.
- (iv) The nullity $\nu(x) < t$, where $\nu(x) = \tau(\text{kernel}(x))$.
- (v) x is intertible modulo It.
- (vi) x is invertible modulo J_t .

Proof. (i) \rightarrow (ii). Trivial, since $I_t \subset J_t$.

(ii) \rightarrow (iii). Assume that $yx-I \in J_t$ for some $y \in M$. Note that $y \neq 0$. By Lemma A, there is a closed subspace K of H such that $K \in M$,

$$||yx\xi|| < (1/2)||\xi||$$
 for $\xi \in K$ with $\xi \neq 0$

and $||yx\xi|| \ge (1/2)||\xi||$ for all $\xi \in K^{\perp}$.

Thus $||x\xi|| \ge (1/(2||y||))||\xi||$, for all $\xi \in K^{\perp}$. It suffices to show that $\tau(K) < t$. For all $\xi \in K$, we have

 $||(I-yx)\xi|| \ge ||\xi|| - ||yx\xi|| \ge ||\xi|| - (1/2)||\xi|| = (1/2)||\xi||,$

which shows that I-yx is bounded below on K. By Proposition 2.1, $\tau(K) < t$, as desired.

(iii) \rightarrow (iv). Let x be bounded below on p(H) for some $p \in P$ with $\tau(1-p) < t$. Choose $\varepsilon > 0$ such that $||x\xi|| \ge \varepsilon ||\xi||$ for all $\xi \in p(H)$. Put L = (1-p)(H). With these ε and L, let K be a closed subspace satisfying Lemma A. By Lemma B, we have $\tau(K) \le \tau(L) < t$. Since kernel(x) $\subset K$ (See Lemma A), we get the desired conclusion.

(iv) \rightarrow (iii). Assume that $\nu(x) < t$. Let $E(\cdot)$ be the spectral measure of |x|. Since $\lim_{\varepsilon \to 0} \tau(E[0,\varepsilon)) = \nu(x)$, there is a positive real number ε such that $\tau(E[0,\varepsilon)) < t$. We put $p = E[\varepsilon,\infty)$. Then $\tau(1-p) < t$, while x is bounded below on p(H).

(iii) \rightarrow (i) Let $p \in P$ be as in (iii). We can find $y \in M$ such that $yx\xi = \xi$, for all $\xi \in p(H)$

and

yn=0, for all $\eta \in [x(p(H))]^{\perp}$.

Then

yxp=p, so $yx-I=(yx-I)(I-p)\in I_t$,

since $I-p \in I_t$.

 $(v)\rightarrow(vi)$ and $(vi)\rightarrow(ii)$ are clear.

It remains to prove the implication (iv) \rightarrow (v). As in the proof of (iv) \rightarrow (iii) we put $p\in E[\varepsilon,\infty)$, where $\varepsilon<0$, $E(\cdot)$ is the spectral projection of |x| and $\tau(1-p)< t$. Let us find $y\in M$ just as in the proof of (iii) \rightarrow (i) so that $yx-I\in I_t$. We have to show that this y also satisfies that $xy-I\in I_t$.

Let us put $L=x(E[\varepsilon,\infty)(H))$, which is a closed subspace of H such that $L \in M$ and $\tau(L)=\tau(p)=1-t$. For every $\eta \in H$, we write $\eta=\eta_1\oplus\eta_2$, where $\eta_1\in L$ and $\eta_2\in L^\perp$. Thus, $\eta_1=x\xi$ for some $\xi\in p$ (H), and $xy\eta=xy\eta_1+xy\eta_2=xyx\xi$ (noticing y in the proof of (iii) \to (i) vanishes on L^\perp , while $yx\xi=\xi=\eta_1$. This implies that xyq=q, where q is the projection onto L. It follows that $xy-I=(xy-I)(I-q)\in I$, since $\tau(q)=\tau(p)$ and hence $\tau(1-q)=\tau(1-p)< t$.

For $x \in M$, $t \in (0, 1]$, let us put $\sigma_t(x) = \{ \lambda \in C : \nu(x - \lambda) \ge t \}$.

By Proposition 3.1, $\lambda \in \sigma_t(x)$ if and only if $x-\lambda$ is not invertible modulo J_t . In particular, x has no eigenvalue if and only if $x-\lambda$ is invertible modulo J_t for every $t \in (0, 1]$ and any $\lambda \in C$.

Proposition 3.2. The function $x \in M \rightarrow \nu(x) \in [0, 1]$ is upper semicontinuous with respect to the norm topology of M.

Proof. To prove the contraposition, let $t \in [0, 1]$, $\{x_n\} \subset M$,

 $\nu(x_n) \ge t$ and $x_n \to x$ in norm. It suffices to prove that $\nu(x) \ge t$. Assume contrary that $\nu(x) < t$. By Lemma 3.1, there is $p \in P$ and a positive number ε such that $\tau(1-p) < t$ and $||xp\xi|| \ge \varepsilon ||p\xi||$ for all $\xi \in H$. Then, for all $\xi \in H$.

$$||xp\xi|| = ||xp\xi|| - ||(x_n - x)p\xi||$$

$$\geq \varepsilon ||p\xi|| - ||x - x|| ||p\xi||$$

$$= (\varepsilon - ||x_n - x||) ||p\xi||,$$

which shows that x_n is bounded below on p(H) for a sufficiently large integer n. By Lemma 3.1 again, we then have $\nu(x_n) < t$, for such n, which is a contradiction as desired.

Lemma 3.3. Let $x \in M$, $t \in (0.1]$ and $\lambda \in C$. If $\nu_t(x) < |\lambda|$, then $x - \lambda$ is invertible in M modulo I_t .

Proof. Since $\nu_t((1/|\lambda|)x) < 1$, we may prove the following: If $\nu_t(x) < 1$, then x-I is bounded below on p(H) for some $p \in P$ with $\tau(1-p) < t$ (Proposition 3.1). Since $\nu_t(x) = \inf\{||xp|| : p \in P : \tau(1-p) < t\}$, there is $p \in P$ such that ||xp|| < 1 and $\tau(1-p) < t$. Then for all $\xi \in p(H)$ with $||\xi|| = 1$.

$$||(x-I)\xi|| \ge ||\xi|| - ||x\xi|| = ||\xi|| - ||xp\xi||$$

$$\ge ||\xi|| - ||xp||||\xi||$$

$$= (1 - ||xp||) ||\xi||,$$

while 1-||xp||>0. By Proposition 3.1, x-I is invertible in M modulo J_t , as desired.

Corollary 3.4. For $x \in M$, $t \in (0, 1]$, $\sigma_t(x)$ is a compact subset of C contained in the closed disk about the origin with radius $\nu_t(x)$.

Proof. It is immediate from Proposition 3.2 and Lemma 3.3.

References

- 1. R.G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert Space, Proc. Amer. Math. Soc. 17(1966) 413-415.
- G. Edgar, J. Ernest and S.G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21(1971) 61-80.
- 3. T. Fack and H. Kosaki, Generalized s-numbers of \u03c4-measurable operators,

Sa Ge Lee, Sung Je Cho and Seung-Hyeok Kye

Pacific J. Math. 123, No. 2(1986) 269-300.

- 4. P. Halmos, A Hilbert space problem book, Van Nostranel Co. (1967).
- 5. V. Kaftal, On the theory of compact operators in von Neumann algebras I, Indiana Univ. Math. J. 26(1977) 447-457.
- 6. S. G. Lee, S. M. Kim and D. P. Chi, Closed ideals in a semifinite, infinite von Neumann algebra, arising from relative ranks of its elements, Bull. Korean Math. Soc. 21(1984) 107-113.
- 7. S.G. Lee, S.J. Cho and S.K. Kim, The closed ideals of an infinite semifinite factor, J. Korean Math. Soc. 22(1985) 143-149.
- 8. S. G. Lee and S. J. Cho, Selfcommutators in an infinite semifinite factor, J. Korean Math. Soc. 23(1986) 73-82.

Seoul National University Seoul 151-742, Korea and Song Sim College for Women Seoul 422-100, Korea