ON THE PRIMALITY OF THE MERSENNE NUMBER M,

Shin-Won Kang

There are some theorems which give the practical tests for the primality of the Mersenne number M_p where p is an odd prime. [1] [2]. The purpose of this paper is to derive much more general results of the above theorems by using the properties of the polynomials $S_n(a, x)$ and $D_n(a, x)$.

Let a be a nonzero integer. For every positive integer n the polynomials $S_n(a, x)$ and $D_n(a, x)$ are defined as follows:

$$S_n(a, x) = \sum_{i=0}^{\left[\frac{n}{2}\right]} {n-i \choose i} a^{n-2i} x^i$$

$$D_n(a, x) = \sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n}{u-i} {n-1 \choose i} a^{n-2i} x^i$$

If a is a nonzero fixed element in F_p , where p is an odd prime, then the polynomials $S_p(a, x)$ and $S_{p-2}(a, x)$ split over F_p and have distinct (p-1)/2 and (p-3)/2 roots in F_p respectively. More precisely, if (a, p) = 1, p is an odd prime, then [4].

$$a^{2}(1-x^{p-1})\equiv S_{p}(a,x)S_{p-2}(a,x)(a^{2}+4x) \pmod{p}$$
.

If n is odd, say n=2r+1 for some positive integer r, then we have that $\lceil 3 \rceil$

$$S_{r}(a, x) = S_{r}(a, x)D_{r+1}(a, x)$$

Let K be a field of characteristic p and n a positive integer not divisible by p, and ζ a primitive n-th root of unity over K. The polynomial

$$\Phi_n(x) = \prod_{\substack{s=1\\(n,s)=1}}^n (x - \zeta^s)$$

is the *n*-th cyclotomic polynomial over K. When we refer to the characteristic p of K in this discussion, we permit the case p=0 as well. The following facts are well known. [6]

Recieved June 1, 1988.

Revised October 17, 1988.

(i)
$$x^n-1=\prod_{d\mid n}\Phi_d(x)$$

- (ii) The coefficients of $\Phi_n(x)$ belong to the prime subfield of K, and to Z if the prime subfield of K is the field of rational numbers.
- (iii) If K=Q, then the *n*-th cyclotomic polynomial $\Phi_n(x)$ is irreducible over K and $[K^{(n)}:K]=\phi(n)$, where $K^{(n)}$ is the splitting field of x^n-1 over K.
- (iv) If $K=F_q$ with (q,n)=1, then $\Phi_n(x)$ factors into $\phi(n)/d$ distinct monic irreducible polynomials in K[x] of the same degree d; $K^{(n)}$ is the splitting field of any such irreducible factor over K; and $[K^{(n)}:K]=d$, where d is the least positive integer such that $q^d\equiv 1\pmod{n}$

LEMMA 1. Let K be a field of characteristic p, and n and m the positive integers not divisible by p. Then

$$\Phi_n(x^m) = \prod_{\substack{d \mid m \\ \left(\frac{m}{d}, n\right) = 1}} \Phi_{dn}(x)$$

Proof. See [5]

If α and β are the roots of the characteristic polynomial $f(t) = t^2 - at - x$ of the polynomial $S_n(a, x)$ (or, equivalently $D_n(a, x)$), then [3]

$$S_n(a, x) = \alpha^n + \alpha^{n-1}\beta + \dots + \alpha\beta^{n-1} + \beta^n$$

$$D_n(a, x) = \alpha^n + \beta^n.$$

If $n \ge 2$, then $\Phi_n(x) = 0$ is a reciprocal equation over K and $\beta^{\beta(n)}\Phi_n\left(\frac{\alpha}{\beta}\right)$ is a symmetric polynomial of degree $\phi(n)$ in α and β over K, where $\alpha\beta \ne 0$.

Definition. Let a and b vary over nonzero integers and α and β the roots of the polynomial $f(x) = x^2 - ax - b$ over Q. If $n \ge 2$, then $\beta^{b(n)}\Phi_n\left(\frac{\alpha}{\beta}\right)$ is a polynomial in a and b over Z and is denoted by $K_n(a,b)$.

Simple calculation shows that $K_2(a, b) = a$, $K_3(a, b) = a^2 + b$, $K_4(a, b) = a^2 + 2b$, $K_5(a, b) = a^4 + 3a^2b + b^2$, $K_6(a, b) = a^2 + 3b$,

On the primality of the Mersenne number M_p

Lemma 2. Let a and b be any nonzero integers and $n \ge 2$ is a positive integer. Then

$$S_n(a,b) = \prod_{\substack{d \mid (n+1) \\ d > 1}} K_d(a,b),$$

$$D_n(a,b) = \prod_{\substack{d \mid n \\ (\frac{n}{d},2) = 1}} K_{2d}(a,b).$$

Proof. Since $\Phi_1(x) = x - 1$ and $x^{n+1} - 1 = (x-1)(x^n + x^{n-1} + \dots + x + 1) = \prod_{\substack{d \mid (n+1) \\ 3 \leq 1}} \Phi_d(x)$ we have that $x^n + x^{n-1} + \dots + x + 1 = \prod_{\substack{d \mid (n+1) \\ 3 \leq 1}} \Phi_d(x)$.

So,
$$S_n(a,b) = \alpha^n + \alpha^{n-1}\beta + \dots + \alpha\beta^{n-1} + \beta^n = \prod_{\substack{d \mid (n+1) \\ d > 1}} \beta^{\flat(d)} \Phi_d\left(\frac{\alpha}{\beta}\right)$$
$$= \prod_{\substack{d \mid (n+1) \\ d > 1}} K_d(a,b).$$

$$\begin{split} D_n(a,b) &= \alpha^n + \beta^n = \beta^n \left[\left(\frac{\alpha}{\beta} \right)^n + 1 \right] = \beta^n \Phi_2 \left[\left(\frac{\alpha}{\beta} \right)^n \right] \\ &= \beta_n \prod_{\substack{d \mid n \\ \left(\frac{n}{d}, 2 \right) = 1}} \Phi_{2d} \left(\frac{\alpha}{\beta} \right) = \prod_{\substack{d \mid n \\ \left(\frac{n}{d}, 2 \right) = 1}} K_{2d}(a,b). \end{split}$$

Here we used the fact that $\sum_{\substack{d \mid n \ (\frac{n}{d},2)=1}} \phi(2d) = n$ which can be proved

easily.

LEMMA 3.
$$\Phi_n(1) = K_n(2, -1)$$

Proof. If a=2 and b=-1, then $f(x)=x^2-2x+1$ has the roots $\alpha=\beta=1$ and the lemma is true.

Corollary 1. If p is an odd prime, then

$$K_p(2,-1)\equiv 0 \pmod{p}$$

Proof. If p is an odd prime, then $\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$ and $\Phi_p(1) = p \equiv 0 \pmod{p}$.

COROLLARY 2. If p is an add prime, then

$$K_p(a,b) \equiv (a^2+4b)^{(p-1)/2} \pmod{p}$$

Proof. If p is an add prime, then [3]

Shin-Won Kang

$$S_{p-1}(a,b) \equiv (a^2+4b)^{(p-1)/2} \pmod{p}.$$

From Lemma 2, $S_{p-1}(a,b) = \prod_{\substack{d \mid p \ d \mid p \ d \mid 2}} K_d(a,b) = K_p(a,b).$

Lemma 4. Let q be an odd prime and a_1 and b_1 the integers not divisible by q. If $K_n(a_1, b_1) \equiv 0 \pmod{q}$, $n \geq 3$, then $K_n(a, b)$ has a factor of the form $a^2 + cb$ over F_a , where $c = -(a_1^2)/b_1$.

Proof. Since $\phi_n(x) = x^r[(x+1/x)^r + d_1(x+1/x)^{r-1} + \dots + d_r]$, suppose that $K_n(a,b) = (a^2)^r + s_1(a^2)^{r-1}b + \dots + s_rb^r$ where $r = \phi(n)/2$ and $K_n(a_1,b_1) \equiv 0 \pmod{q}$. Let us denote $(b^{-1})^rK_n(a,b)$ by $F(b^{-1}a^2)$, then $F(x) = x^r + s_1x^{r-1} + \dots + s_r$ has a root $x = b_1^{-1}a_1^2$ over F_q . This means that $x - b_1^{-1}a_1^2$ is a linear factor of F(x) and equivalently $a^2 + cb$ is a factor of $K_n(a,b)$, where $c = -(a_1^2)/b_1$.

Lemma 5. Let a and b be integers, then for a positive integer n, $D_{2n}(a,b) = [D_n(a,b)]^2 - 2(-b)^n$

Proof. $[D_n(a,b)]^2 = (\alpha^n + \beta^n)^2 = \alpha^{2n} + \beta^{2n} + 2(\alpha\beta)^n = D_{2n}(a,b) + 2(-b)^n$. So the lemma is true.

Let p be an odd prime and $M=M_p=2^p-1$. Suppose that $M=M_p$ is prime. Since $S_M(a,x)$ and $S_{M-2}(a,x)$ split over F_M and have distinct (M-1)/2 and (M-3)/2 roots in F_M respectively, they can be factored over F_M as follows:

$$S_{M}(a, x) = S_{2^{p-1}}(a, x) = S_{1}(a, x)D_{2}(a, x)D_{2^{2}}(a, x)\cdots D_{2^{p-1}}(a, x)$$
$$= a(a^{2} + c_{1}x)\cdots(a^{2} + c_{i}x)\cdots(a^{2} + c_{(M-1)2}x)$$

 $S_{M-2}(a, x) = S_{2^{p-1}-2}(a, x)D_{2^{p-1}-1}(a, x)$ and consequently

$$S_{2^{p-1}-2}(a, x) = (a^2 + d_1 x) \cdots (a^2 + d_{2^{p-2}-1} x)$$

$$D_{2^{p-1}-1}(a, x) = a(a^2 + e_1 x) \cdots (a^2 + e_{2^{p-2}-1} x).$$

If a^2+cx is a factor of $D_{2^{i-1}}(a,x)$, $2 \le i \le p-1$, then $(\alpha+\beta)^2-c\alpha\beta$ $=\alpha^2+\beta^2+(2-c)\alpha\beta$ is a factor of $\alpha^{2^{i-1}}+\beta^{2^{i-1}}$. So of course $\alpha^4+\beta^4+(2-c)\alpha^2\beta^2$ is a factor of $\alpha^{2^i}+\beta^{2^i}=D_{2^i}(a,x)$ and must be factored over F_M as $\alpha^4+\beta^4+(2-c)\alpha^2\beta^2=(\alpha^2+\beta^2)^2-c\alpha^2\beta^2=(\alpha^2+\beta^2+k\alpha\beta)(\alpha^2+\beta^2-k\alpha\beta)$ where $k^2=c$ and we have that $\left(\frac{c}{M}\right)=1$. On the other-

hand, if $a^2+dx=\alpha^2+\beta^2+g\alpha\beta$ is a factor of $S_{2^{p-1}-2}(a,x)$, then there exists $\alpha^2+\beta^2+h\alpha\beta=a^2+fx$ which is also a factor of $S_{2^{p-1}-2}(a,x)$

such that $2-h^2=g$ over F_M [4]. This means that $\alpha^2+\beta^2+g\alpha\beta=a^2+dx=\alpha^2+\beta^2+(2-h^2)\alpha\beta=(\alpha+\beta)^2-h^2\alpha\beta=a^2+h^2x$ and we have that $d=h^2$ and $\left(\frac{d}{M}\right)=1$. Since $a^2(1-x^{M-1})\equiv S_M(a,x)\left(S_{M-2}(a,x)\left(a^2+4x\right)\right)$ (mod M) and there are (M-3)/2 elements of F_M such that $\left(\frac{c}{M}\right)=1$, then a^2+cx is a factor of $D_{2^{i-1}}(a,x)$, $2\leq i\leq p-1$, or $S_{2^{p-1}-2}(a,x)$ and if $\left(\frac{c}{M}\right)=-1$, then a^2+cx is a factor of $D_{2^{p-1}}(a,x)$ or $D_{2^{p-1}-1}(a,x)$ because there are (M-1)/2 elements of F_M such that $\left(\frac{c}{M}\right)=-1$. So we have the following result:

Lemma 6. Let p be an odd prime and $M=M_p=2^p-1$. If M is prime, then a^2+cx is a factor of $D_{2^{p-1}}(a,x)$ or $D_{2^{p-1}-1}(a,x)$ over F_M , if and only if $\left(\frac{c}{M}\right)=-1$.

THEOREM 1. Let p be any odd prime and $M=M_p=2^p-1$. Suppose that for nonzero integers a_1 and b_1 , $\left(\frac{b_1}{M}\right)=1$ and $\left(\frac{a_1^2+4b_1}{M}\right)=-1$. Then M is prime if and only if $K_{2^p}(a_1,b_1)=D_{2^{p-1}}(a_1,b_1)\equiv 0$ (mod M).

Proof. Suppose that $M=M_p$ is prime and $\left(\frac{a_1^2+4b_1}{M}\right)=-1$. Then $f(t)=t^2-a_1t-b_1$ is irreducible over F_M and so $S_M(a_1,b_1)=0$ in F_M .

$$S_{M}(a_{1}, b_{1}) = S_{1}(a_{1}, b_{1})D_{2}(a_{1}, b_{1})D_{2^{2}}(a_{1}, b_{1})\cdots D_{2^{p-1}}(a_{1}, b_{1}) = 0$$

in F_M , and for some positive integer r, $2 < r \le p-1$, we must have that $D_{2r}(a_1, b_1) = 0$ in F_M . As $S_M(a_1, x)$ splits over F_M , so does $D_{2r}(a_1, x)$ and there exists a factor $a_1^2 + cx$ of $D_{2r}(a_1, x)$ over F_M such that $a_1^2 + cb_1 = 0$ in F_M . Consequently we have that $1 = \left(\frac{a_1^2}{M}\right) = \left(\frac{-cb_1}{M}\right) = \left(\frac{-1}{M}\right)\left(\frac{c}{M}\right)\left(\frac{b_1}{M}\right) = -\left(\frac{c}{M}\right)$ and from Lemma 6, $a_1^2 + cx$ must be a factor of $D_{2^{p-1}}(a_1, x)$, and $D_{2^{p-1}}(a_1, b_1) \equiv 0 \pmod{M}$

is evident. From Lemma 2, we have that $D_{2^{p-1}}(a_1, b_1) = K_{2^p}(a_1, b_1)$. Conversely, assume that M is composite and $D_{2^{p-1}}(a_1, b_1) = K_{2^p}(a_1, b_1) = 0$ (mod M) holds. Then the same congruence is true to any modulus q which divides M. Suppose that $K_{2^p}(a_1, b_1) \equiv 0$ (mod q) where q is an odd prime factor of M. Then from Lemma 4, $K_{2^p}(a, b)$ has a factor $a^2 + cb$ where $c = -(a_1)^2/b_1$ over F_q . Since $a^2 + cb = (\alpha + \beta)^2 - c\alpha\beta = \alpha^2 + \beta^2 + (2 - c)\alpha\beta$ is a factor of $K_{2^p}(a, b) = \alpha^{2^{p-1}} + \beta^{2^{p-1}} = \beta^{4(2^p)}\Phi_{2^p}\left(\frac{\alpha}{\beta}\right)$, $K_{2^p}(a, b)$ factors into the product of quadratic symmetric polynomials in α and β over F_q and $q^2 \equiv 1 \pmod{2^p}$. From the theorems of factorization of $\Phi_{2^p}(x)$ over F_q we must have that

$$q-1=k(2^p)$$
 or $q+1=k(2^p)$.

The former is impossible because q is greater than M and the latter is impossible unless k=1. Hence q=M and M is prime.

To compute the value of $D_{2^{p-1}}(a_1, b_1) = K_{2^p}(a_1, b_1)$, we use the following sequence $\{r_i\}$ which is obtained from Lemma 5.

COROLLARY 1. Let p be any odd prime and $M=M_p=2^p-1$. M is prime if and only if $r_{p-1}\equiv 0 \pmod{M}$ where $r_1=4$, $r_i=r_{i-1}^2-2$, $i\geq 2$. [1].

Proof. Since $M=2^p-1$, $2^p\equiv 1\pmod M$ and $2^{p+1}\equiv 2\pmod M$. Put $2^{(p+1)/2}=a_1$, and $1=b_1$, then $a_1^p\equiv 2\pmod M$ and $\left(\frac{2}{M}\right)=1$. So we have that

$$\left(\frac{a_1^2+4b_1}{M}\right) = \left(\frac{2+4}{M}\right) = \left(\frac{6}{M}\right) = \left(\frac{2}{M}\right)\left(\frac{3}{M}\right) = -1$$

because $M\equiv 1 \pmod{3}$. Now, $r_1=D_2(a_1,b_1)=a_1^2+2b_1\equiv 4 \pmod{M}$, $r_2=D_4(a_1,b_1)\equiv 4^2-2=14 \pmod{M}$, ..., $r_{p-1}\equiv (r_{p-2})^2-2\pmod{M}$. This completes the proof.

COROLLARY 2. Let p be a prime of the form 4n+3 where n is a

positive integer. Then $M=M_p=2^p-1$ is prime if and only if $r_{p-1}\equiv 0\pmod{M}$ where $r_1=3$, $r_i=r_{i-1}^2-2$, $i\geq 2$. [1] [2].

Proof. If p is a prime of the form 4n+3, then $2^{p}-1=2^{4n+3}-1=(16)^{n}\cdot 8-1\equiv 2\pmod{5}$.

So we have that $\left(\frac{5}{M}\right)=-1$ and we may put $a_1=1$, and $b_1=1$ in Theorem 1. Now $r_1=D_2(a_1,b_1)=a_1^2+2b_1=3$, $r_2=3^2-2=7$, ... The corollary is true.

THEOREM 2. Let p be any odd prime and $M=M_p=2^p-1$. Suppose that for some nonzero integers a_1 and b_1 , $\left(\frac{b_1}{M}\right)=1$, $\left(\frac{a_1^2+4b_1}{M}\right)=1$ and $D_d(a_1,b_1)\neq 0$ (mod M) where d is a divisor of $2^{p-1}-1$ such that $1< d< 2^{p-1}-1$. Then M is prime if and only if $K_{2^p-2}(a_1,b_1)\equiv 0$ (mod M).

Proof. Suppose that $M=M_{p}$ is prime and $\left(\frac{a_{1}^{2}+4b_{1}}{M}\right)=1$. Then $f(t)=t^{2}-a_{1}t-b_{1}$ is reducible over F_{M} and $S_{M-2}(a_{1},b_{1})=0$ in F_{M} . [4] This means that $S_{M-2}(a_{1},b_{1})=S_{2^{p-1}-2}(a_{1},b_{1})D_{2^{p-1}-1}(a_{1},b_{1})=0$ in F_{M} . Since $S_{M-2}(a_{1},x)$ splits over F_{M} , there exists a factor $a_{1}^{2}+cx$ of $S_{M-2}(a_{1},x)$ such that $a_{1}^{2}+cb_{1}\equiv 0\pmod{M}$. Then $\left(\frac{c}{M}\right)=-1$ and from Lemma 6. $a_{1}^{2}+cx$ is a factor of $D_{2^{p-1}-1}(a_{1},x)$, and $D_{2^{p-1}-1}(a_{1},b_{1})\equiv 0\pmod{M}$. Since $D_{2^{p-1}-1}(a,b)=\prod_{\substack{a=0\\ m\neq 2^{p-1}-1\\ 1}}^{m}K_{2d}(a,b)$

and $D_d(a_1,b_1)\equiv 0\pmod M$ where d is a divisor of $2^{p-1}-1$ such that $1< d< 2^{p-1}-1$, $K_{2^p-2}(a_1,b_1)\equiv 0\pmod M$ is evident, because if d is a divisor of $2^{p-1}-1$, $1< d< 2^{p-1}-1$, then $D_d(a_1,b_1)\equiv 0\pmod M$ implies that $K_{2^d}(a_1,b_1)\equiv 0\pmod M$.

Conversely, assume that $M=M_{\rho}$ is composite and $K_{2^{\rho}-2}(a_1,b_1)\equiv 0 \pmod{M}$ holds. This congruence is true to any modulus q which devides M. Suppose that $K_{2^{\rho}-2}(a_1,b_1)\equiv 0 \pmod{q}$ where q is an odd prime factor of M. Then from Lemma 4, $K_{2^{\rho}-2}(a,b)$ has a factor a^2+cb where $c=-(a_1^2)/b_1$. Since $a^2+cb=(a+\beta)^2-c\alpha\beta=\alpha^2+\beta^2+(2-c)\alpha\beta$ is a factor of $K_{2^{\rho}-2}(a,b)=\alpha^{2^{\rho-1}-1}+\beta^{2^{\rho-1}-1}=\beta^{\phi(2^{\rho}-2)}\Phi_{2^{\rho}-2}$

Shin Won Kang

 $\left(\frac{\alpha}{\beta}\right)$, $K_{2^{p}-2}(a,b)$ factors into the product of quadratic symmetric polynomials in α and β over F_q and $q^2\equiv 1\pmod{2^{p}-2}$. From the theorems of factorization of the cyclotomic polynomial $\Phi_{2^{p}-2}(x)$ over F_q we must have that $q+1=k(2^{p}-2)$ or $q-1=k(2^{p}-2)$. The former is impossible unless q=1 which is unthinkable and the latter is impossible unless k=1. Hence q=M and M is prime.

References

- 1. G. H. Hardy and E. M. Wright, An itroducton to the theory of numbers, 4th. ed. Oxford, 1960.
- 2. L. K. Hua, Introduction to number theory, Springer-Verlag, 1982.
- 3. Shinwon Kang, Remarks on finite fields III, Bull. Korean Math. Soc. 23 (1986), 103-111.
- 4. Shinwon Kang, On the factors of the polynomial $S_n(a, x)$ over F_k , J. of Basic Sciences. Hanyang Univ. Vol. 6(1987).
- 5. Shinwon Kang, A note on cyclotomic polynomials, J. of Basic Sciences. Hanyang Univ. Vol. 7(1988).
- 6. R. Lidl and H. Niederreiter, Finite fields, Cambridge Univ. Press 1984.

Hanyang University Seoul 133-791 Korea