NOTES ON THE FRESNEL INTEGRABLE FUNCTIONS *

K.S. CHANG, I. YOO AND J.G. KIM

I. Introductory Preliminaries

Let H be a separable Hilbert space over \mathbb{R}. Let $M(H)$ be the collection of \mathbb{C}-valued, countably additive measures on $\mathcal{B}(H)$, the Borel class of H. $M(H)$ is a Banach algebra under the total variation norm where the convolution is taken as the multiplication. Given $\mu \in M(H)$, $\hat{\mu}$ is defined for every r in H by the formula

$$\hat{\mu}(r) = \int_{H} \exp\{i(r, h)\} d\mu(h).$$

Let $F(H) = \{\hat{\mu} \mid \mu \in M(H)\}$. The correspondence $\mu \rightarrow \hat{\mu}$ is injective and carries convolution into pointwise multiplication. Hence, letting $\|\hat{\mu}\| = \|\mu\|$, we have that $F(H)$ is a Banach algebra. The Fresnel integral $\mathcal{F}(\hat{\mu})$ is defined for $\hat{\mu}$ in $F(H)$ by the formula

$$\mathcal{F}(\hat{\mu}) = \int_{H} \exp\{-\frac{i}{2} \|h\|^2\} d\mu(h).$$

The space $F(H)$ plays a key role throughout the fundamental monograph [2] of Albeverio and Høegh-Krohn.

Fix $t > 0$. Let H_t be the space of \mathbb{R}-valued functions r on $[0, t]$ which are absolutely continuous with square integrable derivative Dr and which satisfy $r(t) = 0$. H_t is a separable Hilbert space over \mathbb{R} with inner product

$$\langle r_1, r_2 \rangle = \int_{0}^{t} (Dr_1)(s)(Dr_2)(s) ds.$$
Functions on H_t of the form

\begin{equation}
 g(r) = \psi(r(0)),
\end{equation}

where $\psi : \mathbb{R} \to \mathbb{C}$, are simple but crucial for the applications of the theory to quantum mechanics. A very simple result of Albeverio and Høegh–Krohn [2] shows that if $\psi = \tilde{\nu}$ where ν is in $M(\mathbb{R})$, then g is in $\mathcal{F}(H_t)$, the Fresnel class of H_t. Because of the great usefulness of the Fresnel class, it is natural to ask if g of the form (1.4) is in $\mathcal{F}(H_t)$ for some class of ψ's. In their paper [6], Chang, Johnson and Skoug showed that the answer is “No”; that is, if g is in $\mathcal{F}(H_t)$, then there exists ν in $M(\mathbb{R})$ such that $\psi = \tilde{\nu}$. And also Johnson proved in his paper [7] that $\mathcal{F}(H_t)$ is equivalent to the space S which is a Banach algebra of analytic Feynman integrable functionals.

There is a particular Hilbert space H_Q which is an extension of Albeverio and Høegh–Krohn’s H_t. H_Q is the space in which we will be concerned throughout this paper.

Fix $p, q > 0$ and let $Q = [0, p] \times [0, q]$. Let H_Q be the set of all functions $r : Q \to \mathbb{R}$ for which there exists v in $L_2(Q)$ such that for all (s, t) in Q

\begin{equation}
 r(s, t) = \int_s^p \int_t^q v(\tau_1, \tau_2) \, d\tau_1 \, d\tau_2.
\end{equation}

The inner product on H_Q is defined by

\begin{equation}
 (r_1, r_2)_{H_Q} = \int_0^p \int_0^q \left(\frac{\partial^2 r_1}{\partial s \partial t} \right)(s, t) \left(\frac{\partial^2 r_2}{\partial s \partial t} \right)(s, t) \, ds \, dt.
\end{equation}

H_Q, equipped with this inner product, is a separable infinite dimensional Hilbert space over \mathbb{R}. It will be helpful to introduce the family of functions $\{r_{\tau_1, \tau_2} : (\tau_1, \tau_2) \in Q\}$ from H_Q;

\begin{equation}
 r_{\tau_1, \tau_2}(s, t) = \min\{p - s, p - \tau_1\} \min\{q - t, q - \tau_2\}.
\end{equation}

These functions have the reproducing property,

\[(r, r_{\tau_1, \tau_2})_{H_Q} = r(\tau_1, \tau_2) \quad \text{for all} \quad r \quad \text{in} \quad H_Q, \]
and also H_Q is the reproducing kernel Hilbert space associated with two parameter Brownian motion.

In this paper, we show that various functions belong to $\mathcal{F}(H_Q)$, the space of Fresnel integrable functions on H_Q. And we establish necessary and sufficient conditions for the Fresnel integrability of certain class of functions on H_Q.

II. Some Fresnel Integrable Functions on H_Q

In their paper [5], Chang, Johnson and Skoug established a main theorem. After the statement of this theorem, we find various Fresnel integrable functions on H_Q as its corollaries.

Theorem. (1.) Let H be a separable infinite dimensional Hilbert space over \mathbb{R}.

(2.) Let (Y, \mathcal{Y}, η) be a measure space where η is either a non-negative, σ-finite measure or a \mathbb{C}-valued measure.

(3.) Let $\theta_{i,j} : Y \to H$ be $\mathcal{Y} - \mathcal{B}(H)$ measurable for $i = 1, \ldots, l$, $j = 1, \ldots, m$.

(4.) Let $\theta : Y \times \mathbb{R}^m \to \mathbb{C}$ be given by $\theta(y, \cdot) = \hat{\nu}_y(\cdot)$ where ν_y is in $M(\mathbb{R}^m)$ for every y in Y and where the family $\{\nu_y : y \in Y\}$ satisfies:

(i) $\nu_y(B)$ is a \mathcal{Y}-measurable function of y for every B in $\mathcal{B}(\mathbb{R}^m)$, and

(ii) $\|\nu_y\|$ is in $L_1(Y, \mathcal{Y}, |\eta|)$.

Under these hypotheses, $f : H \to \mathbb{C}$ given by

\begin{equation}
(2.1) \quad f(r) = \int_Y \theta(y, <r, \theta_{1,1}(y)>, \ldots, (r, \theta_{l,n}(y)) >) d\eta(y)
\end{equation}

belong to $\mathcal{F}(H)$ and satisfies the inequality

\begin{equation}
(2.2) \quad \|f\| \leq \int_Y \|\nu_y\|d|\eta|(y).
\end{equation}

Further, since $\mathcal{F}(H)$ is a Banach algebra, g is in $\mathcal{F}(H)$ where

\begin{equation}
(2.3) \quad g(r) = \exp\{f(r)\}.
\end{equation}

Remarks. (1) It suffices to assume in (4.) that $\theta(y, \cdot) = \hat{\nu}_y(\cdot)$ for η-a.e. y in Y.

(2) Since $\mathcal{F}(H)$ is a Banach algebra, many analytic functions of f can formed. We explicitly mention the exponential function in (2.3) because it plays a central role in the quantum theory.

Our first two corollaries are the extension of simple results of Albeverio and Hoegh–Krohn’s [2].

COROLLARY 1. Let $\psi = \hat{\nu}$ where ν is in $M(R)$. Define $f_1 : H_Q \to C$ by

$$f_1(r) = \psi(r(0,0)).$$

Then f_1 belongs to $\mathcal{F}(H_Q)$.

Proof. Apply the above theorem after making the following choices: $H = H_Q, (Y,Y,\eta) = (Q,\mathcal{B}(Q),\eta)$ where η is any probability measure, $l = m = 1$ and $\theta_{1,1}(s,t) = r_{0,0}(s,t)$ as in (1.7), $\theta((s,t),\cdot) = \hat{\nu}(\cdot)$. With these choices, the right hand side of (2.1) becomes

$$\int_Q \hat{\nu}((r,r_{0,0})_{H_Q}) d\eta(s,t) = \psi(r(0,0)),$$

and the result follows.

COROLLARY 2. Let $\theta = \hat{\nu}$ where ν is in $M(R)$. Define $f_2 : H_Q \to C$ by

$$f_2(r) = \int_Q \theta(r(s,t)) ds dt.$$

Then f_2 belongs to $\mathcal{F}(H_Q)$.

Proof. Take $H, Y, \eta, l, m,$ and θ as in the proof of Corollary 1. Let η be Lebesgue measure on Q and take $\theta_{1,1}(s,t) = r_{s,t}$ as in (1.7). Then the right hand side of (2.1) is just

$$\int_Q \theta(r,r_{s,t})_{H_Q}) ds dt = \int_Q \theta(r(s,t)) ds dt,$$

and the result follows.
Let $H_Q^{lm} = \prod_1^m H_Q$ consist of functions $r : Q \to \mathbb{R}^{lm}$ such that each component $r_{i,j}$ is in H_Q. Define the inner product of r and r^* in H_Q^{lm} as the sum of the H_Q inner products of the components.

Corollary 3. Let $\theta = \hat{\nu}$ where ν is in $M(\mathbb{R}^{lm})$. Define $f_3 : H_Q^{lm} \to \mathbb{C}$ by

$$f_3(r) = \int_Q \theta(r_{1,1}(s,t), \ldots, r_{l,m}(s,t)) \, ds \, dt. \quad (2.6)$$

Then f_3 belongs to $\mathcal{F}(H_Q^{lm})$.

Proof. Apply the above theorem after making the following choices: $H = H_Q^{lm}$, (Y, \mathcal{Y}, η) as in Corollary 2, $\theta((s,t), \cdot) = \hat{\nu}(\cdot)$, $\theta_{i,j}(s,t)$ the function in H_Q^{lm} which is 0 except in the (i,j)th component where it is $r_{s,t}$.

The next corollary is an extension of Corollary 4 in [5].

Corollary 4. Let $\theta : Q \times \mathbb{R} \to \mathbb{C}$ be given by $\theta((s,t), \cdot) = \hat{\nu}_{s,t}(\cdot)$ where $\nu_{s,t}$ is in $M(\mathbb{R})$ for every $(s,t) \in Q$ and where the family $\{\nu_{s,t} : (s,t) \in G\}$ satisfies: (i) $\nu_{s,t}(B)$ is a Borel measurable function of (s,t) for every B in $\mathcal{B}(\mathbb{R})$, and (ii) $\|\nu_{s,t}\|$ is integrable over Q with respect to Lebesgue measure. Define $f_4 : H_Q \to \mathbb{C}$ by

$$f_4(r) = \int_Q \theta((s,t), r(s,t)) \, ds \, dt. \quad (2.7)$$

Then f_4 belongs to $\mathcal{F}(H_Q)$.

Proof. Make the choice of H, Y, \ldots from the above theorem as in Corollary 2 except taking $\theta((s,t), \cdot) = \hat{\nu}_{s,t}(\cdot)$.

The following is as in Corollary 4 except that Lebesgue measure is replaced by a general Borel measure η on Q.

Corollary 5. Let $\theta : Q \times \mathbb{R} \to \mathbb{C}$ be given by $\theta((s,t), \cdot) = \hat{\nu}_{s,t}(\cdot)$ where $\nu_{s,t}$ is in $M(\mathbb{R})$ for every $(s,t) \in Q$ and where the family $\{\nu_{s,t} : (s,t) \in \bar{Q}\}$ satisfies: (i) $\nu_{s,t}(B)$ is a Borel measurable function of (s,t)
for every \(B \) in \(\mathcal{B}(R) \), and (ii) \(\| \nu_{s,t} \| \) is integrable over \(Q \) with respect to |\(\eta \)| where \(\eta \) is a Borel measure on \(Q \). Define \(f_5 : H_Q \to \mathbb{C} \) by

\[
f_5(r) = \int_Q \theta((s,t),r(s,t))d\eta(s,t).
\]

Then \(f_5 \) belongs to \(\mathcal{F}(H_Q) \).

Proof. Apply the above theorem with \(H = H_Q, Y = Q, \mathcal{Y} = \mathcal{B}(Q), l = m = 1 \) and \(\theta_{1,1}(s,t) = r_{s,t} \) where \(r_{s,t} \) is given by (1.7).

III. Necessary and Sufficient Conditions for the Fresnel Integrability on \(H_Q \)

In this section, we establish necessary and sufficient conditions for the Fresnel integrability of certain class of functions on \(H_Q \) which are similar to those on \(H_t \).

THEOREM 1. Let \(0 \leq s_1 < s_2 < \cdots < s_l < p, \ 0 \leq t_1 < t_2 < \cdots < t_m < q, \) and let \(\nu \) be in \(M(\mathbb{R}^{lm}) \). Define \(f : H_Q \to \mathbb{C} \) by

\[
f(r) = \tilde{\nu}(r(s_1,t_1),\ldots,r(s_l,t_m)).
\]

Then \(f \) is in \(\mathcal{F}(H_Q) \); in fact, there exists a unique measure \(\mu \) in \(M(H_Q) \) such that

\[
\tilde{\mu}(r) = \tilde{\nu}(r(s_1,t_1),\ldots,r(s_l,t_m))
\]

for all \(r \) in \(H_Q \).

Proof. Let \(\theta : \mathbb{R}^{lm} \to H_Q \) be defined by

\[
\theta(a_{1,1},\ldots,a_{l,m}) = a_{1,1}r_{1,1} + \cdots + a_{l,m}r_{l,m}
\]

where \(r_{i,j} \equiv r_{s_i,t_j} \) as in (1.7) for \(i = 1,\ldots,l, \ j = 1,\ldots,m. \) Let \(\mu = \nu \circ \theta^{-1} \). Then \(\mu \) is in \(M(H_Q) \). By the linear independence of \(r_{1,1},\ldots,r_{l,m} \)
and the change of variable formula, we can write, for any r in H_Q,

\[\hat{\mu}(r) = \int_{H_Q} \exp\{i(r, h)\} d\mu(h) \]

\[= \int_{H_Q} \exp\{i(r, h)\} d(\nu \circ \theta^{-1})(h) \]

\[= \int_{R^{lm}} \exp\{i(r, \theta(a_{1,1}, \ldots, a_{l,m}))\} d\nu(a_{1,1}, \ldots, a_{l,m}) \]

\[= \int_{R^{lm}} \exp\{i(r, a_{1,1}r_{1,1} + \cdots + a_{l,m}r_{l,m})\} d\nu(a_{1,1}, \ldots, a_{l,m}) \]

\[= \int_{R^{lm}} e^{i((r, a_{1,1}), \ldots, (r, r_{l,m}))(a_{1,1}, \ldots, a_{l,m})} d\nu(a_{1,1}, \ldots, a_{l,m}) \]

\[= \check{\hat{\nu}}(r(s_1, t_1), \ldots, r(s_l, t_m)). \]

Finally the uniqueness of a measure μ satisfying (3.2) is a consequence of the fact that the map $\mu \to \hat{\mu}$ is one-one.

Note that Corollary 1 in Section 2 is just the special case of Theorem 1 with $l = m = 1$ and $s_1 = t_1 = 0$.

THEOREM 2. Let $0 \leq s_1 < s_2 < \cdots < s_l < p$, $0 \leq t_1 < t_2 < \cdots < t_m < q$, and let $\psi : R^{lm} \to C$. Suppose that there exists μ in $M(H_Q)$ such that for all r in H_Q.

\[\hat{\mu}(r) = \psi(r(s_1, t_1), \ldots, r(s_l, t_m)). \]

Then there exists a measure ν in $M(R^{lm})$ such that $\psi = \check{\hat{\nu}}$ on R^{lm}.

Proof. Let $r_{i,j} \equiv r_{s_i, t_j}$ as in (1.7) for $i = 1, \ldots, l$, $j = 1, \ldots, m$, and let $[r_{1,1}, \ldots, r_{l,m}]$ be the span of $r_{1,1}, \ldots, r_{l,m}$. By the linear independence of $r_{1,1}, \ldots, r_{l,m}$, we know $\dim[r_{1,1}, \ldots, r_{l,m}] = lm$, and hence $\{((r, r_{1,1}), \ldots, (r, r_{l,m})): r \in [r_{1,1}, \ldots, r_{l,m}]\} = R^{lm}$.

By the Gram–Schmidt process, we get an orthonormal set $\{e_{1,1}, \ldots, e_{l,m}\}$ which is a basis for $[r_{1,1}, \ldots, r_{l,m}]$. For each $i = 1, \ldots, l$, $j = 1, \ldots, m$,

\[r_{i,j} = (r_{i,j}, e_{1,1})e_{1,1} + \cdots + (r_{i,j}, e_{l,m})e_{l,m}. \]
Hence
\[
\hat{\mu}(r) = \psi((r, r_{1,1}), \ldots, (r, r_{\ell,m})) \\
= ((r_{1,1}, e_{1,1})(r, e_{1,1}) + \cdots + (r_{1,1}, e_{\ell,m})(r, e_{\ell,m}), \\
\ldots \ldots \ldots, \\
(r_{\ell,m}, e_{1,1})(r, e_{1,1}) + \cdots + (r_{\ell,m}, e_{\ell,m})(r, e_{\ell,m})) \\
= B((r, e_{1,1}), \ldots, (r, e_{\ell,m}))
\]
where \(B \) is the linear map from \(\mathbb{R}^{lm} \) onto \(\mathbb{R}^{lm} \) sending \(((r, e_{1,1}), \ldots, (r, e_{\ell,m})) \) to \(((r, r_{1,1}), \ldots, (r, r_{\ell,m})) \).

By Proposition 6 in [6], there exists \(\eta \) in \(M(\mathbb{R}^{lm}) \) such that \(\hat{\eta} = \psi \circ B \) on \(\mathbb{R}^{lm} \). Applying Lemma 7 in [6] with \(T = B^{-1} \), we see that \(\psi = (\psi \circ B) \circ B^{-1} \) is the Fourier transform of some measure \(\nu = \eta \circ B^t \) in \(M(\mathbb{R}^{lm}) \), that is, \(\psi = \hat{\nu} \) for some \(\nu \) in \(M(\mathbb{R}^{lm}) \).

References

Department of Mathematics
Yonsei University
Seoul, 120–749, Korea