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1. Introduction

Let C be an affine curve, P a closed point on C, X a nonsingular surface conta-
ining C as a closed subscheme of codimension 1.

The blowing-up X’ of X with center P induces the blowing-up C’ of C with
center P, which is a curve on X',

It is known that C’ is affine. Let R, X’ be respectively the coordinate rings of
C,C'; if m is the maximal ideal in R corresponding to P,R’ is called the ring
“obtained from R by blowing~up m”.

In (4), Lipman gives a more general definition of the ring obtained from a
}-dimensional ring blowing-up an ideal. Let (A4,m) be a local Cohen-Macaulay ring

of dimension |. Then the ring obtained by blowing-up = is
Ua(m’l im") = Uo{aeﬁ |@m™om”)

which is also equal to A[z/x,,2,/%] where {z1,2; -2} is a set of generators of
m, X is a sutible element in » and A is the normalization of A,

Let A=k[t":,---,1"#] be a subring of R=k.[t] where k is algebraically closed. We
assume 7, <#, << ntp, and (my, -, 7,) = 1.
R is integral over A and the quotient field of them are equal because (s, ;%)
=],

The injective envelope of k£ over K is
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Er(h) =kt kgt Rf 14

where f;=1/t'"! (mod K).
Then, we can show that the dualizing complex for A is

I° Qs K~ E (k)0
where K =0(A), F,(k) the injective envelope of £ over A, (6)

Proposition 1-1. Let A=k[t™, -, 1"}, where m,<n;<--»<{#5, (my,-,m) =1, Then the
ring obtained from A by blowing-up m= (", -, t"¢) i8 A=k[{", """, .. (70 1]

Proof. According to (11), we have A=Al¢{"V/x,--,1"*/x] where xcm is such that
xm™=m"*! for a sutible n>>0. We put x={"', showing that the valuation »(x) is equal

to ». Since xm™=m"t!, we have
(- DmEZ = <v(x) + 10y, o, 0(x) 0, oy 0(X) FRatty b Ry, o>

where &y+ky+ - +ho =m0,
If v(x)>n, for each (ky--+,k,) such that &;+--+k,=n, We have (n-+1)n,=nn, +n=
(kyt oot kp) mitmy KRyt oo katty) kg o0 + Rty + (%)

(n+1)m& 3, which is contradiction,

1f follows

A:A[t"’/t"‘, t"z/t"l,...'t")/t"l]
=™, treM, . e,

2. Dualizing Complex of the ring obtained from
k(2™ -, ¢t] by blowing-up m= (£, .-+, ")

We shall recall the definitions and some properties of the Local Cohomology, the
Dualizing Complex and the Matlis Duality which are used in this paper.
Let A be a noetherian local ring with maximal ideal m and M be a finitely

generated A-module, Let
L.(M)={x&=Mmrx =0 for some k}

Then L, is a left exact functor.
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let I, be the {-th right derived functor of L,, then
. lim . v
H.'(;M)r:j—»ExtA'(A/m » M),

This H.'(M) is called the /-th Local Cohomology module of the A-module M. Also

it can be defined in the usual way taking an injective resolution I°,
HA(MY=H(L.(I")).

A Dualizing Complex for A is an injective complex I’ in #.'(A) (that is, I is
bounded and all its cohomology modules are finitely generated) with the following

property; whenever X° is a complex in #.%(A) then
g* : X*—Hom,(Hom (X", 7"),7")

is a quasi-isomorphism,
According to (9), an injective complex 7 '&# (A) is a Dualizing Complex for A

iff the morphism of complexes
a" : A—-Hom,(I",I")

is a quasi-isomorphism,
If I° is a Dualizing Complex for A as in (10) we define {(m : I") to be the unique

integer ¢ for which
H'(Homy (k,1°))%0 where k=A/m.

The injective envelope of k=A/m over A is denoted by E,(k). Let D denote the
Matlis Duality functor

D(—)=Homu(—,E\(k)).

Let I' be a arbitrary Dualizing Complex for A, Let t=¢(m:7") and M be a finitely
generated A-module. Then

H(M)Y=D(H' "(Hom, (M. 1°)))

for each i=0.

Let (A,m,k) be a one-dimensional noetherian local domain, Then the Local
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Cohomology of A is H.2 (A)=k/A where K is the quotient field of . If A is Gore-
nstein then [} (A) = £, (k).

The ring obtained from k[¢™,..-,#"*] by blowing-up
me= (1M, e, 170) 08 A=R[", £, e e
If 2n,<n, is hold then (m,7s—mn;, -, n,—n)=1 and
<ty — 1 < Mg — 0y <o <Py Ny,
So we can obtain the Dualizing Complex for A.
Theorem 2-1, Let A=k[t":, -, "} R=k[t] where
Ly <oty 2y (m1y P30+, 1) = 1.
The ring obtained from A by blowiné«up m= ("1, " 8) I8
A=R[E™, 172", wen, 17071
Then the Dualizing Complex for A4 is
J' 10— K——E, (k)—-0
Where K =@(A), E,(k) is the injective envelope % over A.
Let ny,7,,+--,n, be positive integers such that
<My < <My, (Myy Mgy -ory M) = 1.

Let S be the semi-group generated by {#, -, 7).
Then there is an element ¢{—=sup (N..S)

S is called symmetric if S satisfies the property;
s€=S iff t—se£S
Then the subring k[t™,.--,#"] is Gorenstein iff the semi-group S is symmetric (2).

Theorem 2-2, Let the assumption be the same (Th. 2-1) and S be the semi-group

— 4 .
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generated by {a,, #,-7;, -, #,-n;} Then the Local Cohomology /H.'(4)2=K/A satisfies

HM (D) =DH(J ")), where H(J )>~R+N' where N'--37 k- i'*'l’“"
i k4

Proof. See the Theorem 43 (6).

Examples 2-3. Consider the subrings A=k{t% (%], B=k[3,1, 18] of R=Fk[t].
Then the rings obtained from A, B by blowing-up

ma= (13,15, my= (5,18 is C=k{t?, 3], D=R[t 14, 5].

respectively.

A,C are Gorenstein and B, D are not Gorenstein, For
Sa=10, ()s 2, C)s 4 5,}

Se=10, (s () 3, (), (), 6 7y}

Se={0, (), 2, 3,4}

Sp=10, (), (), 3, 4}

Here S, S; are symmetric and S; S, are not symmetric,
Take Ni=kf,+kfs a A-submodule of Eg(k).

Then H.'(AY=D(H (1))

where H°(I")=R+ N =R+kt -+ ki *=k+kt*+1'R=A,
Take Np=kfi+kf+kfi+kfs a B-submodule of Fg(k).
Then H, ' (BY=D(H*(I'}).

where H(I')=R+N'=R+ ki 24kt 34 ki 5 +-ht Ck+ht +- k1 +ki*-+- 18R
Take No.=£kf, a C-submodule of Ez(k)

Then H. '(CY=D(H*(I")).

where I{°(I") =R+ N'=R-‘k,*=k-1?R=C,

Take Np=kf,--kf; a D-submodule of Fg(k).

Then H,"(D)Y=D{H*(I")).

where H*(I')=R + N'~R vkt 2 ki *~=k -kt + 3R,
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