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Throughout this paper we shall assume that X is a compact topological space and
a vector bundle & over X is a finite dimensional real vector bundle over X. In a
vector bundle & over X, the spinorial structure (Definition 4) and the Stieful Whitney
classes of £ are closely related ([1], [4]). Moreover, if £ is a spin bundle (i.e., §

has the spinorial structure) then there is the Thom-Gysin isomorphism
K3(X) —= KFine (XY,

where X¢ is the Thom complex of & ([2]).
In this paper, we shall prove that for a vector bundle § over X &DEDEEE is a
spin bundle (Theorem 5),

Let G be a topological group. A G-cocycle on X is given by an open cover {U,}

of X, and continuous maps
g U UUi—G

such that
1) vaeUWU;NUs gai(%) =gui(x) g1:(x)
(i) wvxe=U; g::(x)=1g(identity of G)
(iii) wvasU. U, gu(x)=g(x)"".
Let (U;,g&,:) and (V.,k,) be two G-cocycles on X. If there exist continuous maps
UV, »(: such that h,,(x) g,(x) g.:(x)gi(xy~t for each x»=U,NU,NV.NV,
then (U‘,g;‘) and (V,,h,,) are saxd to be equivalent, written (U,,g,,)w(If R

Then “~” ig an equlvalence relatmn ([4D. The set of all G«cocycles over X is denoted
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by Cocy (X:G). We shall put H'(X:G)=Cocy(X:G)/~,

Let ®3(X) be the set of isomorphism classes of real vector bundles over X with
rank (dimension) s Then ®2(X) is naturally isomorphic to H'(X : GL,(R)) ([4D]).
Let a GL,(R)-cocycle (U;,g;) correspond to [&=(F,p, X)]cP¥(X), and let 4, :
U/ xR"—E|U;=Ey, be a trivialization of £, Then for each x&U,N\U,, Aki(x,v)=
hi(%,85:(x)v) ([3D).

Lemma }. For a vector bundle & over X with a metric B, let s, ---,s. be vector
fields such that for each x=X, s,(x),--,s5,(x) are linearly independent., Then there
exist vector fields sf*,---,s.* such that for each ¥&X, B(s*(x), s*(x))=4,,.

Proof. For each xe=X we put

st (¥) =51(0)/VB(s:(x), 5:1(x)),

We assume that s*, ---,5,*, have been chosen with A(s* (1), s*(x))=4,, for 14, j<k—1
and x&X, For =X we put
st @)=~ 25 (0, s* () s DV 1A~ 22 Bsa(x), s (9))sf (3) |
where [sy(x)— 32 B(si(x), s* (%)) s () P=B(sa(x) — 3T B(si(x), s* (%)) s*(x),
18)8k~1 18/5k~1
su(@)— 30 B(sa(x), s*(x))s*(x)). It is clear that s*,--,s* satisfy the desired

18isk~1
properties, ///

Lemma 2. Let £ be a vector bundle over X with rank », and 8 be a metric of £.
Then there exists an atlas {(U,, 2*)|(U,, 2*) is a trivialization of &} such that
@lw)=8(h*(x,0), h*(x,w)), where x&U;, v=_(v1,",0.), w=(wy, -, w,)R" and

(v]w):.;‘f'_:l.‘ v.w;. The cocycle {g;;} of this atlas have their values in O(»).

Proof. Let {(U,, 4:,)} be an atlas of & For each xeU, and Gj:“(Ot""O,(i:Op -+, 0)
R (i=1,-,1) we define

hi(x,e)=s;(x), J=1,2,,1m

Then vector fields s,(x),--,s,(x)} are linearly independent, By Lemma 1, there are
vector fields s®,.--,s* of & over U, such that for all xe=U; 8(s* (x), s* (x))=8,,. We

define

,“. : U.' XR”"'-"""PG‘U‘
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by AE (% ay, ) =a,5% (x) + - +a,5% (%)

Then A* is a trivialization of § over U; and {(U,, A¥*)} is an atlas with the desired
property,
Next, for xe=U,U; and », we=R"

@lw)=Brf* (x,0), h* (%, w0))=Bh¥ (%, 8::(x)v), h}* (%, & (x)w)
=(gi(#)v]|gs(x)w)

and thus g (x)0Mm). ///

Let §=(F, p,X) be a vector bundle over X. A metric B of & is defined as follows,

i) E=XxR". f((x,v), (x,w))=(v|w).

if) E is isomorphic to X xR", Let f: E——-T=X x R" be an arbitrary isomorphism.
For e,e’&Ex, we assume f(e)=(x,v) and f(e')=(x,w) (v,w=R"). Then we put
Ble,e)=(vlw).

iii) £ is arbitrary, Let {U;|{&I} be an open cover of X such that each E|\U;=Ey,
is trivial and {U.},s, is locally finite. Let {a,|/<I} be a partition of unity associated
with {U;[/€]}. Let §; be a metric on Ey, defined as in (ii)., The metrix f: EXE—R

is defined by the formulas

{ﬂ(e,e’)=2:a,-(x) Bi(e,e’) if xe=U,,e and ¢'<E,
(34
B:(e,e)=0 if x&U,, e and ¢'<E,.

Proposition 3. Every vector bundle & over X with rank » has an O(n)~cocycle
{g:).

Proof. By the above description & has a metric 5, By Lemma 2, £ has an atlas
{(U:, 2*)} such that the cocycle {g;;} of the atlas {(U,, A*)} have their values in O(n),
i.e., for all xe=lU, U, g5 (x)s0OMm). ///

For a finite dimensional real vector space with a nondegenerate quadratic form Q,
we can define the Clifford algebra C(V,Q)=C(V) ([3],(4]). Moreover, there exists the
canonical map V—C(V) which is injective, and thus we identify V with its image
in C(V). In particular, the endomorphism s~ —p of V induces an involution on C(V),
written x~—x(x6=C(V)). As well-known C(V) is Z/2-graded(Z : integers) such that
CV)=Co(V)@CH(V) ([31,[4]). If xe=C%(V) then F=x and if xe=C'(V) then %= —ux.
We put C*(V)=C(V)—{0}. The twisted Clifford group F(V) is the set {xe=C*(V) |
%Vx 1=V}, where x7! is the inverse of x. Letp: f(V)--+GL(V) be the homomorphism

—_— g —
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xwﬁ(x):ﬁx where for each vV  p,(v) =% vx™l,

We have the exact sequence of groups:

~

]~ R*—s F(V)_ L, 0(V)—1

where R*=R - {0} (R : reals).
For an element y=y,---2,(#,&V) of C(V) we put *y=v,v,, For an element x=C((V)
its spinorial norm N(x) is defined by N(x)=‘%-x&C(V). Then the map

F()—s R* (xr—N(x))

is a group homomorphism ([4]). If we put reWy=Fy)yNCV), SOW)={us0(V)|
Det(u) =1} (ue=O(V)—>Det(u)=+1) and p"——:;)]l"’(V), then we have the exact
sequence ([4]):

1— R¥%—— (V) P2, SO (V) — 1.

Moreover, if we put Pin(V)= (x=F (V)| IN(x) =1} and Spin(V)=Pin(V)[1C°(V) then
there are two exact sequences:

1—Z/2— Pin (V)—> O (V)—1

1— Z/2— Spin(V)—— SO (V)1

([4]). Therefore, we let Spin (#) denote the group Spin(V) when V=R", provided
with the quadratic from @ such that

n

2= (%, X)ER =D Q(2) =20 xf

iel
We have the exact sequence ([41):

1 Z/2——Spin(w)-L2, SO —— 1. (36)

Definition 4. Let £=(V, pv,X) be a vector bundle over X with rank #, An orie-
ntation of & is an elgament ac=HY (X : SL,(R)) such that under the natural map ¢:H!
(X : SL.(R))—HY(X : GL. (R)) ¢(a) contains §. A spinorial structure (or spin
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structure) of £ is an element ae=H'(X : Spin(#)) such that under the natural map
¢ H(X: Spin(n))— H*(X: GL.(R)) ¢(a) contains £ It & has a spin structure then
& is called a spin bundle.

Let {g;;} be G-cocycle on X ::ng‘ (open cover), where G 1is a topological group.

We introduce the equivalence rpla;ion “~" on the disjoint union P= Q IU ;X G( : indexing

set) such that

for (v, 80, (51,8)EYUXGC=P, (4,8~ (%:,8,) iff
x;=x,&U:\U; and g,=g:(x) &..

The group G acts on the right on P such that (x‘,g,)g (x, 2 g)
Since this action is free X~P/G. Let F be a n-dlmenswnal real vector space such
that G acts on the left on F. We put

E=PXsgF=PXF/r~

where (p, f)~(pg,g ' f) for g&GC and (p, f)ESP XF. Then we have the assertion([4]):
E is a vector bundle over X assoclated thh the cocycle {g:.} O IN

Theorem 5. Let &=(E, p,X) be a vector bundle‘ over X with rank ». Then £D§
has an orientation and EPEDEPE is a spin bundle, where & means the Whitney sum
of bundles,

Proof. Our proof is divided into the followiqg three steps.

Step 1. By Proposition 3, there is an O(»#)-cocycle {g;} which is associated with
the vector bundle £, By the above descriptions (3%3%), there exists a principal bundle P
such that

Ez=P XowmBR".

Step @I. We shall prove that EPE has an orientation. The principal bundle P in
step [ is associated with the cocycle {g:}, wherg for a}l x<=UNU;, g1(x)=0).
Then the bundle ERE (or £DE) may be written as P’ X oy R2", where P’ is the

principal bundle associated with the cocycle

giu(x) O )

ma@ =(07
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for all xlU;NU;, (X ==‘QIU,- is an open cover), Therefore

Det (%;i(x))=Det (£,:(x)) - Det (g (x))=1

and thus 2;;(x)&=S0(2x#). By Definition 4, &4¢ is an oriented bundle.
Step H. As in step ]I, since £&@¢ has an orientation there exists a principal bundle
P over X with structure group SO(2#n) such that

EBE=P Xsozn» R*".
Suppose the composite homomorphisms

7+ SO(2m)—— SO (27) X SO (2n)— S0(4n)
U U U]

a h— axa h— (aO)
0 a/.

Note that the map R*"— R*PR"=R¢ (x~—2xP0) induces the homomorphism
7y : Spin(2#)— Spin(4») and the map R*"——s R*"PHR™ (x+—0Px) induces the homom-
orphism £, : Spin(2n)— Spin(4#).

Define the homomorphism D : Spin(2x) X Spin(2»)— Spin(4n) by

‘ D(ay, @p) =4y (ay)iz(az)
for each (a;,a;)&Spin(2#) xSpin(2x%). For eé=+1 and p=-+1 it is clear that
D(eay, na;) =€y D(a;, a;)

If we=SO(2n) and (0% *(u)=(—it, +4} (see (3%) above) in Spin(2n) then D(i, @)=
D(—#,—#%)=v is a well defined element of Spin{4n). We define the homomorphism
J : SO(2n)— Spin(4n) by ur—v(j(x)=v). Then we have the commutative diagram

SO(Zn)
/,-/ ©
Spin(4m)—2 .50 (4m)

Let {g’;} be the SO(2m)-cocycle associated with the oriented bundle EDE (or £DE).
The Spin(4n)—cocycle {#’,;} associated with EQEDEQDE is defined by the commutative

diagram:
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Ui (1U;s et . Spin(am)
g’ :‘;'\\ © J
N
Thus, by Definition 4 £@EDEDE is a spin bundle. ///
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