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1. Introduction

Let V be a bounded domain in R” and f(x,s) a real-valued Caratheodory continuous

function defined on V xR with the primitive
F(x,s)=I;f(x,t) dt.

Let 2; be the first eigenvalue of the Laplace operator on V, and let »(x) be the
corresponding eigenfunction. We consider the following three conditions, in which p
and g are chosen so that p=2n/(n+2) and g=n/2 if #>2, p>>1and g>1 if #=2, and
p=q=1 if n=1,

(1) There exist a(x)eL*(V) and b(x)eL*(V) such that

[ f{x,8) {<a(x)|s] +b(x)
for all s&<R and a.e, x&V,

Fx,
32

R s) 1
(2) limsup ~-< -4 for a.e.x&V.
: F(x,50(x)) 1
(3) lﬁz‘sgp va—?—-——dx<«§~lxjvv(x)’ dx,

These conditions imply the existence of a weak solution to the semilinear elliptic

Dirichlet problem

(1.1 [-—Au=f(x,u) +hinV,
u=0 on aV,

for any k&=H '(V), the dual space of the Sobolev space H (V). By a weak solution
we mean a function weH¢ (V) satisfying that

LDu-Dw= j S wyw ()
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for all we=H¢ (V). Here by Du we denote the gradient of » and by the bracket <<,>
we denote the dual pairing between H-YW(V) and H¢ (V).

To prove the preceeding result, we consider the corresponding energy integral
J @ =3[ 10wl =[ e, +<hu>
¥ v

defined for we=H¢ (V). Under the conditions (1), (2) and (3), we show that the
functional J(x) has a minimum in H¢ (V). This minimum is a weak solution to (1.1).

As an example that satisfies (1), (2) and (3), we have
Fx,s)=F(s) -_2. 132(—%.+_~12« sin(log|s]))

modified to be continuously differentiable near s=0. The main difficulty is to justify

(3). For this we use the function
m(t) =measure of the set {x&V |[v(x) >},

By using the smoothness of m(¢#) we can prove (3) for this example.

Several authors have studied various nonresonance conditions for semilinear elliptic
problems,

A classical result due to Hammerstein [2] says that if f(x,s) is continuous,
satisfies a linear growth condition and if for some number ux<{1,/2,

l ll%s:]p F (x s) <u

uniformly for x&V, then (1.1) has a solution for any 4. This result was extended
by Mawhin-Ward-Willem [6], who assume f(x,s) grows at most as |s|" for some
r<(n+2)/(n—-2) (r<oo if #=1 or #=2) and that for some function a(x)=L=(V)
with a(x)<2;/2 a.e. in V and a(x)<A;/2 on a subset of positive measure, and

F(x s)

hmsup <a(x)

[Edind

uniformly for a.e.x in V. Recently, Figueiredo and Gossez [17 found a nonresonance

condition that contains the case when
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for a.e, 2V, They use the notion of positive density of a set at infinity.
Nonresonance between any two consecutive eigenvalues of semilinear elliptic
operators is studied by Landesman and Lazer [3], Lazer and Leach [4], Mawhin and
Ward [7], and Metzen [9].
Our result contains the classical one and that of [1]. Concerning with the result

of [6], ours is a partial generalization in the special case when f(x,s) grows linearly

in the variable s,

2. Preliminaries

In this section we give some preliminary lemmas which will be used in the proof
of our main results, At first, we start with the following lemma which appears in

[5]. We give here a slightly modified proof,

Lemma 2.1. Let X be a finite measure space, #; and x functions in L7(X),

1<r< oo, such that

{#;} is a bounded sequence and w;— % a,¢, in X

Then #;—-»u in L™ weakly,
Proof. Let »'=r/(r—1). For any natural number N, let

Ey={xezX||u;(x) —u(x) | <1 for all j=N}.

The measurable set Ey increases with N and measure(E,) converges to measure(X)
as N——oo, Let £>0 be given, and let w be a function in L”. Let ¢y denote the
characteristic function of the set Ey. Then the sequence {wcy} converges to w» in L

by the Lebesgue’s theorem. Hence there exists N such that
low—weyl <&,

Again, by the Lebesgue’s theorem, {wcy(u;—u)} converges to 0 in L' ag j——oo, By

Holder's inequality, we have
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lijm.s.up low (ot —2) |1 <EC

since {#;} is bounded. Since this holds for any €>-0, we conclude that {»;} converges
weakly in L"(X).

Remark 2.2. Note that {|#;—|} also converges to 0 weakly in L7(X).
On account of the following lemma, we were able to remove the uniform converg-

ence from the condition (2).

Lemma 2.3. Assume (1) and (2). Then

. Fx,sw(x)) 1
h,f?..sllp Iv_w*—sz dx < 5 I S (x)*dx

for all w in HE (V).
Proof. By (1), we have

F(x,;zw(x)) g%——a(x)[w(x)lz + 5{x) lsw(x)’

for all s&R and a.e.x<V. By the Sobolev imbedding theorem and the Hélder's
inequality, the right hand side of the above inequality belongs to L'(V) with any
weHE (V). Now by applying the Fatou's lemma to the difference of both sides, we

obtain

[l ey

By (2), the conclusion follows immediately.

Forthcoming two lemmas are essential to the proof of our main results.

Lemma 2.4. Assume (1), Then [/ is wealky sequentially lower semicontinuous in
H¢ (V).

Proof. Assume that #>>2 (the idea of proof is the same in the case when z#=2 or
n=1).

Let {«;} be a sequence in HJ (V) which converges weakly to some z. Without any

loss of generality we may assume that {/(«;)} is convergent. Since I[ Dut’gligninf
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J’lDu;i’ and <k,u>=lim<h,u;>>, to complete the proof, it is sufficient to show that

lim [FGr,u)=[F@,0

By (1), we have
[F(x,u;) —F (x,%) | <a(x)w; +b(x)v,

with w;=(|u| +u)u;/2 and v;= [u;—un].

By the Sobolev imbedding theorem, {u;} is bounded in L*(V) with s=2x/(#—2) and
converges strongly in L'(V). By passing to a subsequence, we may assume that it
converges a.e. to u# in V. Then {w;} is bounded in L"(V) with r=»/(n—2) and
converges a.e. to 0 in V. Not that »’=»/2, Since a(x)eL”(V), by Lemma 2.1,
{a(x)w;} converges to 0 in L*(V). By the similar reason, {#(x)v;} converges to O in

L'(V). Thus {|F(x,u;)—F(x,u)]} converges to 0 in L'(V). This completes the proof.

Lemma 2,5, Assume (1), (2) and (3). Then J is coersive in H {Vy, ice., J(w)

—300 a8 |#]]-s oo,
Proof. Suppose on the contrary that [ is not coersive in H¢ (V). Then we can

choose a sequence {u;} such that

{J (us)} is bounded in H§ (V), and {ju;j]— oo,

Put ¢;={u;}| and v;=u;/¢t;, Note that

1 _1 21 Fx,tws)
7~ P lislimene R
Note also that
F(x,tiw;) —

SEGD oty ol 4 oi-o]) 0i=0) +5() 001/t

Since {v;]|=1, by passing to a subsequence and on account of the Sobolev imbedding
theorem, we may assume that {v;} converges weakly to some v in H (V), {2} is
bounded in L"(V) with r=2#n/(n—2) and v, converges a.¢, to v in V., By the same

reasoning as in the proof of Lemma 2.3, we deduce that
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lira Fx,tiv;) —;I:‘(x, ) =0
F

j-
From this and the first inequality in this proof, it follows that

$ennd 1 ] 3 F(x, t:‘l))
llrjxl{.nf 5 I | Dvi| gh,x_r.gupj'.-—-—-t—;—-ﬁ-

By Lemma 2,3, we obtain
[1por<aifor

since llv]lglifninf floill. Note also that 20, Thus » is the eigenfunction corresponding

to the first eigenvalue of the Laplace operator on V. The condition (3) leads us to a

contradiction,

3. Main Results

Theorem 3.1. Assume (1), (2) and (3). Then there exists we&HJ (V) such that
J @< (w) for all wesHF (V).

Proof. Let {#;} be a minimizing sequence of J in H# (V). Then J(x) is bounded
above, and hence {x;} is bounded in H} (V) by Lemma 2.5. By passing to a subseq-

uence, we may assume that it converges to some # in H§ (V). By Lemma 2.4, we

have

](u)gligx_i.nf J(us).

Hence J(x#) is the minimum value of J in H¢ (V).

Theorem 3.2. Assume (1), (2) and (3). Then the problem (1.1) has a weak

solution in Hg (V).
Proof. In view of the preceeding theorem, it is sufficient to show that J is

Gateaux differentiable in A& (V). For this, note that

(F(x, u+tw) —F(%,%))/t = j”‘ fx,s) ds
= I :f (x, u+stw) wds,

- 124 -~



Remark on nonresonance below the first eigenvalue for a semilinear elliptic problem 7

This function converges to f(x,%)w a.e. in V as {—-0, and it is dominated by the
integrable function (a(x)|u+w|+b(x))|w| near {==0. By the Lebesgue's theorem, it
converges in L}(V) to f(x,u)w. Clearly, the linear functional w~-—>fvf(x, u)w be-
longs to H-(V). This completes the proof,

Concluding this paper, consider the following

Example 3.3. F(s)z.%.l.sz(wsin(log;sl)) for |s|>1. For |s|<1, we extend F(s)

Ay

to be smooth, Let f(s)=F'(s), so we have f(s)-::»Z« s(l—}«sin(log]si))i%’—s cos(log

(Is]) for |s|=1.

Note that

limsup f;(fl» = _22,_

1Rl Radad

limsup L) = 2+45 5,
18] s 4

Note also that
F()<Akst and lf(S)IS»Z—i"Z‘/—E—IsM: for |s|>1.

Thus f(x,s) satisfies (1) and (2). To justify (3), let v(x) be the eigenfunction
corresponding to the first eigenvalue of the Laplace operator on a regular domain. We
may assume that »(x)>0 in V. Put m(¢)=measure of the set {x|v(x)>¢}. We may
assume that m’ ()< —c<{0 for 0<{i<!max v{x)=M with some ¢>>0. This will imply
that F(s) satisfies (3). Indeed, note that, for s>0,

—'%‘—Jv’ »J’ﬂ-sf,".l_z-j':“ﬁ(l —sin(log st)) dm(?)

ECI: t*(1—sin(log st) dt.
ts

With some calculation, we see that the last term has limit inferior equal to (-—:1,-——

J—%G)CM 3, This completes the justification of (3) for our example,
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