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Abstract

This paper deals with the problem of space ailocation of items within a  ware-
house. Recognizing the importance of weights associated with material handling,
mathematical models are developed for two cases, out-and-back selection and storage
reirieval interleaving. It is proved that the density order index rule we proposed
generates an optimal solution for the first model. An example problem solved with
the pairwise interchange method indicates that the rule is also fairly efficient for the
second mode). The proposed rule is compared with other assignment rules of ware-
house space such as COI rule, space and popularity.

1. INTRODUCTION

Material handling is major activities in warehouse operations and represents between
15 and 70 percent of the total cost of a manufactured product. Depending on the type of
warehouse, it is reported that 30 1o 40 percent of warehouse labor costs are incurred by
the picking operation {3]. Therefore, the decision on stock locations in a distribution war-
ghouse is an important concern in ierms of the material handling cost and the work-load
of the order picker.

Several papers addressed the stock location problem in a warehouse with the objective
of assigning items to storage locations to minimize materials handling cost. Heskett [5]
proposed a criterion, which he called the Cube per Order Index(COI) rule. The COJ for
an item is simply the quotient of the space requirement and the order frequency for the item.
Under the COI rule, iterns are assigned to locations in increasing order of CO1 such that
those with lower COI are placed closer to the shipping area, Harmatuck [4] showed the
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optimality of the COI rule for at least one linear programming formulation of the problem.
Kallina and Lynn [6] summarized the overall problems related to stock location and reported
the experience with the application of the COI rule.

All studies mentioned did not consider the effect of the weights on material handling
costs and assumed that the cost of moving an order of any item from a particular location
to the shipping area depends only on the distance, regardless of the item type handled.
However, in real situations, the weights of items, and order picking equipment such as cart,
could be a critical factor in material handling costs. From the view point of human safety,
the importance of weights becomes more prominent when the handling operations are
carried out manually,

Recenctly, we proposed a criterion, called the density order index (DOI) rule [6] which
integrates the weight into the COI rule. This paper intends to briefly intorduce the concept
of the DOI rule and investigate the efficiency when storage and retrieval requests are inte-
tleaved. The rest of the paper is organized as follows. First, a linear programming model
is presented in which the work load, ie., [distance] X [weights of items and order picking
equipment] is minimized. Second, the DOI is shown to generates an optimal solution to the
model. And then, a quadratic programming model is developed where storage and retrieval
transactions are interleaved. Finally, through an example problem, we evaluate the efficiency
of the DOI rule by comparing the total cost of the initial solution obtained by the DOI rule
with those by the pairwise interchange method.

2. LINEAR PROGRAMMING MODEL FOR SIMPLE OQUT-AND-BACK

The LP model is developed with the following assumptions.

(1) An order consists of a quantity of a single item which is retrieved by means of simple
“out-and-back™ selection procedure.

(2) The space required for storing n items may be allocated among m locations in any
manner.

(3) The cost of moving an order is proportional to the workload imposed, i.e., [distance
traveled] X [weight]®, where « is a nonnegative constant.

{4) The work-load required to pick an order at location is constant and thus can be
ignored.

(5) There is a limit on volume but not on weight in each storage location.

(6) Replenishment of stock within the storage area occurs separately from order picking.

The following notations are used throughout this paper.
« =constant which represents the effects of weight on the materials handling cost, a=0.
c =the estimated cost per [distance traveled) X jweight]
m =the number of storage locations in the warehouse
n =the number of items to be stored in the warchouse
WT =the weight of order picker(weight)
S; =the average order size for item i(units)



=the number of orders per period for item i(time™)

DD; =the number of demand periods for item i for which space must be aliocated
(time)

CU; =the space required to store one unit of item i(length’/unit)

WT, =the weight of one unit of item i(weight/unit)

CAP, =the capacity of storage location k(length®)

Dy =the distance from storage location k to storage location u(length)

o denotes the shipping area and the locations are ordered so that
Doy = Ds, 3 k,u=1l, 2, ---, m-1

X, =decision variable which denotes the number of units of item i assigned to storage
location K.(units in real number)

The objective of the LP model is to minimize order retrieving costs per period. The

average number of orders of item i filled from location k per period is
{number of orders of item i per period}
X {fraction of item 1 stored in location k}

=F Xw/($,DDF))
. (1
S,DD;

As already stated, we assume simple “out-and-back™ selection procedure [7] and each
order for an item can be picked by a single trip. In case if an order is expected to be 100
large in size to be handled by one pick, we can replace the order estimate for the item with
an estimate of the total number of picks for the item. Thus, equation (i) represents the
average number of visits (o location k for the retrieval of iterm i per period.

The expected cost of a round trip per period for the retrieval of item i from locaticn
k can be decomposed into two clements. COne is the cost of movement of the order picking
equipment from the shipping area to location k for access to item i and can be expressed
as

¢ D[,k(WT)"—S—I”E(J"T‘)T 2)

The other is the cost of movement of the items picked and the equipment from location

k 10 the shipping area for the retrieval of item i and can be expressed as

¢ Do WTHSWT)" S?I{;]i): (3)

With equations (2) and (3), the problem can be formulated as an LP model as the

followings.
Min. TCs C Do]‘i! !‘!TII +(WT+STWT1) L X (4)
S\DD,
st. FCUXu=CAP, k=12~ m (5)
g X =S\ DD/F; =1, (6)

2,
Xyi=0 k=1,2 -, m;i=L 2, -
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Constraint (5) represents the capacity restriction on location k and (6) assures the
maximum inventory level for item i. Harmatuck [4] expressed the total expected handling
cost per period as
=, COST,
= DDy
» where COSTy is the cost of moving an order of any item from location k to the shipping
area.

TCs=2 - }j X

3. DENSITY ORDER INDEX(DOI) RULE

Define the density, DST;, for item i as follows

_ (WY H(WT+SWT))”
DST, 5,CU,
With DST;, define the Density Order Index(DQI) for each item as
_ DST,
DOL _—DD,
_ (WI+(WT4SWT)” i=1.2. - 1 (N
S5DD,CU, T

Note that the larger either the density (DST)) or the turnover rate(1/DDy) is, the greater
DOI, becomes. In [4], the cube-per-order index for item i, COI, was defined as S,DDCU
i- Hence, when either a=0Q or S;WT, is same for each item. the DOI Rule in the next par-
agraph produces the same result as the COI rule does.

(Density Order Index Rule)

All items are ranked based on their DOI defined as equation (7) such that the item with
the highest index being ranked first. Then, the storage area layout 1s planned as the follo-
wings :

The highest index item goes to location 1, closest to the shipping area, using up as
much space required to accomodate the periods demand target of the item. If not enough
space is available in location 1, the amount left over goes to location 2. On the other hand.
if any empty space remains in location 1, the next highest index item is also placed in loc-
ation 1 in the appropriate amount up to the capacity of location 1. This process continues
until all items have been placed in their proper locations, successively further away from
the shipping area.

Briefly speaking, under the DOI rule, items are assigned to storage locations in decre-
asing order of DOI, those with higher DOI being placed closer to the shipping area.

One of major characteristics of the DOI rule is described in the following theorem.

Theorem 1.
The layout obtained by the DOI Rule is an optimal layout to the LP model represented
by equations (4), (5) and (6).
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{proof
To prove the optimality of the DOI Rule, it is only necessary to show that a violation
of the DOI Rule will never lower the cost. Assume that item i is located in location k and
item j is located in location n according to the DQI Rule, where DOI; 2DOI; and Doy = Dok-
Then for each cubic foot of item i and item j exchanged between locations k and u, the
cost (DTCg) mcurred by the exchange is.

DTCS-“:C . DOLI ( [] +(_W-T+SIWT_1L —_ c- Dou WT + T+S§WT,)

$,DD,CU, S,DDCU,
te-D (WD HWTHSWT) o *H(WT +SWT,)"
o $,DD,CY, ok S,PD.CU;

=¢ + (Dou —Da}{(DOI, — DOL)2 0
Since DTCs==0, a violation of DO Rule will never make the costs smaller.
[QED]
The major merit of this rule is the simplicity of application compared with ordinary
LP algorithm such as the simplex method.
To illustrate the application of the DOI Rule and the effects of «, consider an example
with the data shown in Table |.

Table 1. The data for an example problem

Location Doy CAPk ltem DD] S} Fl CU, WTj

1 10 300 1 20 7 25 1.0 1.0

2 15 300 2 20 6 7 15 2.0

3 20 500 3 4.0 5 6 10 5.0

4 25 500 4 10 15 2 25 6.0

3 30 400 5 20 2 50 3.0 1.5
c=$1and WI=10 6 .5 30 4 2.0 20
7 3.0 10 2 15 10.0

[unit of distance is meter, unit of weight, kilogramme and unit of period, week ]

Table 2. The ranks according to COl; and DOJ,

Ttem @ 0.0 0.5 1.0 20
COL  Rank DO Rank DO, Rank DO Rank DOI Rank
1 140 2 0.14 2 052 2 193 SINVAR 6
2 180 3 0.11 3 044 4 178 7 324 3
3 20.0 4 0.10 4 045 3 225 4 663 4
4 37.5 6 0.05 6 035 6 293 1 2693 2
5 12.0 1 0.17 1 0356 I 192 6 224 7
6 300 5 0.07 5 038 5 2867 2 1667 3
7 45.0 7 0.04 7030 7 267 3 2711 L




TABLE 2 shows the computed values of DOI, of equation (7) and the rank of each
item under a given a(e=0.0, 0.5, 1.0 and 2.0). According to the COI rule, the item with
lowest value is ranked first and goes in location 1 which is closest to the shipping area. Note
that, with =0, DOL;=2/COI, and the DOI rule generates the same rankings as those by
the COI rule. It can be observed that the effects of a become substantial as « becomes
larger. For instance, item 5 is ranked first according to the COI rule but ranked sixth in
the DOI rule with @=1. Also, item 4 occupies sixth rank in the case of the COI rule whereas
first rank in the DOi rule with a=1. These significant effects of « are expected since item
4 is considerably heavier compared to item 5 and thus needs greater work-load in order to
be moved by a unit distance. The X,’s obtained from the COI and DOI rules are listed
in Table 3. The additional cost incurred by neglecting the weight effects can be significant,
Let Xpop be the solution obtained by the DOI rule and Xpq;, by the COI rule. The additional
costs as the results of deviating from the DOI Rule become 74.49% of TCs(Xpot) for a=
2, 8.16% for @=1 and 0.06 % for @=0.5(see Table 3). Generally, the extent of the additional
cost would increase as « increases thongh it depends on the data used.

Table 3. Optimal stock locations

a==() a=05 a=10 a=21
s=100 X15=100 Xm: 30 Xm: 30
X95=100 X25=100 X;s= 60 X17=150
2=350 Xa=350 Xy;=T0 Xo= 40
optimal Xo= 84 Xe= 20 Xa= 60 Xx=120
locations Xou= 24 X=120 Xu=120 Xe= 60
: Xpor Xa= 96 Xp= 64 Xz= 80 X2=350
(others are () Xu= 30 Xu= 30 Xa=290 Xo= 44
Xe= 60 Xe= 60 Xe= 70 Xe= 28
Xe=139.3 Xs=139.3 Xo= 733 Xe=166.7
= 10.7 — 10.7 Xs=130 Xs= 53
Xeo= 10.7
A TCs(Xpop) 3371.6 138124 62451.1 1826405.0
B TCo(Xcor) 33716 138209 67548.9 3186942.0
%=100X(B-A)/A (0.00%) (0.06 %) (8.16 %) (74.49 %)

4. QUADRATIC PROGRAMMING MODEL FOR INTERLEAVING

In this section, a quadratic programming (QP) model is developed to represent the
material handling costs in case of dual command operations. That is, “storage retrieval
mnterleaving” is adopted as scheduling policy. The order picker interleaves a pair of storage
and retrieval requests in each order picking operation as frequently observed in the tool
room operations in a heavy machine manufacturing industries. For instance, the order picker
places the jig and fixture back in storage which was taken out of the tool storage room
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previously and on his way back picks up a tool requested by some machining department.

The round trip cost of a dual command cycie consisits of the cost of travel from the
shipping area to the storage location and the expected cost of interleaving and return travel
to the shipping area. Given that a storage request of item i occurs at location k, the expe-
cted cost of travel to retrieve an item and back to the shipping area is

¢ - SIPG) 3 {WT Duut (WT+S;WT) DonP(ufi) ®)

, where P(j) is the probability that retrieval request is for item j and P(u/j} is the conditional
probability that item j is retrieved from storage location u. P(j) can be estimated by the ratio
of the number of retrieval requests per period for item |, to the total number of retrieval
requests for all items in a period. That is,

PG)=F/FF  j=1,2, -~ n 9)

, where F F=j:Z]:F,

Similary, P(ufj) can be defined as the ratio of the number of retrieval requests per
period for item j in location u, to the number of retrieval requests per period for item j.
That is,

o Xy/(§;DD, X 10

Pujy= 2RO M i) (10)

Using these relationships, the total handling cost (TCq) of dual command operations
in a period can be expressed as

TCq=c - 2;2 ""b [{ WT+S$WT)" Doy
+J§PU)§ {WT Dy +(WT +8,WT) Doy} P(u)j)] (11}

ji

Substituting (9) and (10) for P(j) and P(u/fj) in equation (11), it reduces to

pucl n x «
TCd=c . z; Sil;]!:)l [{WT'}' S[WTO Dok

1 n
+op ;Jz;. 505, WT D+ (WT-+S;WT Do

Rearranging equanon (12) into linear and quadratic terms vields the following equation
of matrices.

(12)

TC,=CX +X10QX
., where Ximn x 0=(Xn, Xz, *°*» Xen)t
C(l xmm=(cu~ Cizr 'Y Cmn)
Quas Qs " Qiten
120k e T Qiren
Qmn x mw= d . 1 . .

qmnlls QMn_I'.‘! Tt qnm.mn
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Ga=c - WT+S,WT, Dow

SDDy

2WT Dy HWT 4 S,WT))” Dy, FWT+SW)'Dy,
2FF(SDD)(S;DDy)

Tids w=C -
k,u=1,2, -, m;i, j=1,2, . n

Also, constraints (5) and (6) can be rewritten by

AX=b

, where A is the [(m+n) x mn| matrix of constraints and b is the [(m—+n) X 1) vector of
right hand side.
From the above representations, the QP model under dual command operation is

Min. TCy=CX+X1QX
s.t. AX=b (13)
X=0

For a>0, the symmetric matrix Q is not necessarily either positive definite or semide-
finite. Therefore, it is not an easy task to obtain a gloval optimal solution.

One approach to find a lower cost solution is the application of the pairwise interch-
ange method on some initial solution. Let X° be an initial solution or assignment vector
with x%;>0, x>0, k<u and i<j. Also, let AX denote the change in X° incurred by
interchanging a unit volume of item i in k and with the same volume of item jin u. Then
AX is mn by 1 coulmn vector whose elements are given as the followings ;

—1/CU; for kit element, 1/CU; for kjtt,
1/CU; for ui™, —1/CU; for ujtt and 0 for all others.

Suppose i in k and j in u are interchanged with the amounts equivalent to z units of
volume. Then the new assignment vector X' can be denoted by

X'=X0+z - AX® with 0=z <min{x%,CU;, x%,CU;}
to maintain the feasibility of X'. The total cost change, DTC,, due to this interchange

becomes DTCy=TCo(X") —TCu(X%)
=(CX'+X"QXY) —(CXO+XNQX%)
=C(X%+z - AX)+H(XO0+z - AXPQ(X%+z - AX)—CXO—XOQXO
=z - C AX+2 - z - AXIQXO422 - AXIQAX

The value of z which minimizes DTCs may be either — ;;@AE;QXO >0, min
{XOMCU[. Xou_-]CUj} or {).

Following the above procedure, we can improve an initial solution obtained by either
the DOI rule or the COI rule until the total cost can be no further decreased, i.e., DTCy=
0 for all possible interchanges. Even though the pairwise interchange method does not
guarantee a least total cost design, it has been frequently used for the development of




heuristic solutions of location problems, i.e.. CRAFT in computer-aided layout |2].
To illustrate the pairwise interchange procedure, we solve the QP model with the data
of TABLE 1. The results are lsted in TABLE 4 and 5 where.
Xcorp=the assignment vector obtained by the pairwise interchange procedure using
Xeop as the initial solution,
Xpo-p=the assignment vector obtained by the pairwise interchange procedure using
Xpor as the initial solution and
N =the number of iterations required to reach Xcgr.p or Xporp from Xcor or Xpor
respectively.

Table 4. The number of iterations required

- N a=0 a=05 a=10 a=2.0
Xpor t0 Xpor-r 0 2 3 0
Xo()] o Xm]-p 0 3 8 10

Table 5, Stock locations by pairwise interchange procedure

a=() a=0h a=].0 a=20

Xs=100 Xu=180 Xwu= 30 Xu= 30

Xx=100 X:=120 Xy=150 =150

Xp= 84 Xa=170 Xp=120 Xx=120

XDO]_p=Xc0[_p Xg;—_-" 24 ng= 20 X26= 60 X:ﬁ: 60

{others are () Xe= 96 Xs=100 Xa=350 Xa=350

K== 60 Xu= 30 Xs= 333 Xe= 28
X:=139.3 Xe= 60 Xs=166.7 X=1667
Xe= 107 Xg7=1393 Xe= 107 Xe= 5.3

X—sr: 1{}.?
A TCy(XpoLp) 3942.3 18676.5 88715.9 3288089.0
B : TCy{ Xpos} 39423 18762.2 891223 3288084.0
%=100x{(B—-A)/A (0.00%) (0.46 %) (.46 %) (0.00%)
C: TCq(Xcorp) 3942.3 18676.5 83715.9 3288089.0

D TCal{ Xcar) 39423 18784.6 1070891 6093795.0
%=100x(D-C) /C (0.00%) (.58 %) {20.71 %) (85.33%)

TABLE 4 shows the number of iterations carried out by the pairwise interchange
method uniil it stops improving each initial solution. It requires 10 inierchange operations
on Xeo to obtain Xeorr when a=2. Jt is interesting to find that Xcorp becomes identical
with Xporp for each a tested. Almost no improvement is made on Xpor itt terms of the total
cost which indicates the efficiency of the DOI rule. For instance, the pairwise interchange
method decreases TCy(Xpor) only by 0.46% for each case of a=0.5 and 1 and none for «
=2. The pairwise interchange method make substantial improvement on the initial layoui
generated by COI rule, ie., 85.33% for «=2 and 20.71 % for a=1.



The above observations suggest that the DOI rule is fairly effective for obtaining an
assignment vector and the pairwise interchange procedure is an efficient too! for finding a
heuristic solution in the QP problem.

6. CONCLUSIONS

The decision on stock location in a warehouse can be very important in terms of the
materials handling cost, Human safety should be incorporated into the cost, particularly
when the handling operations are carried out manually as it frequently done in small and
medium industries in developing countries. In this regards, we propose the DOI rule based
on the weight, space requirement and order frequency of item. The DOI rule generated an
optimal stock locations in the LP model developed for the Heskett problem in a distribution
warehouse. It is shown that the weights of items have significant effects on stock locations.
Also, the DOI rule is shown to be cost effective even in dual command operations since
the pairwise interchange method achieves a very limited improvement on the initial layout
generated by the DOI rule. Thus, in addition to the COI rule, the DOI rule appears another
practical solution technique due to its simplicity and easiness to use.

Another question of interest is what is the proper values of «. For this, we applied the
simple linear regression to the data developed for fatigue allowance such as those from
International Labor Office(ILO) and weight factor included in the objective rating method
developed by Mundel [8].

For the data of ILO, we obtain a=1.72347 and for the data of Mundel, & varies from
1.26787 10 1.58118 which is increasing as the ratio of the elemental time involved in weight
lifting to the cycle time increases. Thus, we suggest that appropriate value of « is 1.5.
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