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Abstract

This study complements the previous studies on workload distribution problems
in Flexible Manufacturing Systems. Specifically, we cousider the problem in iwo
perspectives, the long-range policy and the short and medium-term planning and
control. The long-term loading policy focusses on identifying the optimal loading of
the system characterized by either balanced loading or unique unbalanced loading
for which a steepest ascent method is developed. These results are then applied w0
study the optimal medium and short-term planning and control problems, for which
a truncated dynamic programming method is developed in order to obtain the optimal
allocation of the given operation mix of part types fo work stations.

1. Intreduction

The growing interest in the development and implementation of Flexible Manufacturing
Systems{FMSs) brought many new problems which changed our concept of management
of manufacturing systems. One such problem in FMSs is the workload disiribution problem,
usually 1ermed as ‘loading problem’. which can give an insight into production planning
and control of FMSs.

A common practice in non-automated jobshops and flow shops is to assign each ope-
ration to one machine type. In case of FMS, the individual machine with automatic tool
interchange capability can perform many different types of operations. These versatile
machines with automated material handling devices allow to route jobs auntomatically thr-
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ough the manufacturing system from one machine to the next under the computer control
and numerical control techniques. And the flexibility in assigning operations among mach-
ines permits very general flow patterns of the Jobs within the system. Therefore, as an
automated alternative to the traditional means of batch manufacturing, managing production
for an FMS requires more complex planning and control for part routing, tool interchange,
and machine operations.

Typically, the loading problem arises mainly due to the limited tool magazine capacity,
To route a part to a particular station, all the tools required for the operation should be
placed within its limited capacity tool magazine. Therefore, the loading problem basically
concerns how to allocate all the operations of the product mix of part types among mach-
ines within the associated technical constraints : in other words, how to distribute the work
requirement of part types among machines to determine which machine will be able to
perform each operation of part types.

This paper places a special emphasis on two types of loading problems : one with respect
to the long-term policy and the other with respect to the short-medium-term operational
planning. The objective of the first one is_to predict the performance of the system in the
long-term perspective not being sensitive to flucinations in the part types and operations
mix which directly affect short-term production planning and part scheduling. The second
problem arises on the operational level. That is, how to allocate given operation mix to
stations within the long-term policy already predicted and its associated technical constraints.
Each operation must therefore be assigned to stations, which is particularly of interest to
managers in short and medium term planning.

In section 2, we define the loading problem on the long-term perspective and formulate
it. In section 3, we develop a search method to obtain the optimal loading policy. Section
4 applies the result of section 3 to solve the operational planning problem described. A
numerical example is presented in section 5 to illustrate the potential of the model, Finally,
section 6 concludes the paper with brief summary,

2. Problem Formulation

Suppose we have product types to be manufactured and their relative product ratio,
then we have the number of each operation types from the operation mix of part types. Let
J be the number of part types and M be the number of stations in the shop. Also, let e
be the number of type j operations, j=1, ---, J, v; be the number of operations assigned to
station 1, i=1, *-+, M, and §; be the processing time of the type j operation, =1, ]

Define a variable x; which represents the number of operation type Jj assigned to station
i, 1=I, -+, M and j=1, -+, J. Then, the number of type j operations, w;, and the number
of operations assigned to station i, »;, can be written respectively as -

G=3% (=1, J), @.1)
U[:Jg Xij (i.:l., ey M_). (2'2)

Let ¢4 be the service rate of machine at station i, then the mean processing time of



machine at station i, denoted by 1/e, simply takes the weighted average of the processing
times of the operations performed at station i. That is:

Um=3S%] 38 =1, -, M), 23)

The average work requirement assigned to station i, denoted by g, is equal to the
product of the mean processing time of a machine at station 1 and the number of operations
assigned to station i, which is equivalent to

eu(Um=38% (=1, -+, M), 24)

and can be used as a measure of the relative workload assigned to station i. Equivalently,
%0, where

,ZM.:P’:; ,g: Si¥;; =}_Zl Sje; (2.5
18 the average work requirement of jobs within the system. Then what we are concerned
with is how to distribute the average work requirement of the system among stations.

A major estimation of performance can be measured through the evaluation of the
Jackson queueing. network(Jackson 1963) which has been extensively applied to study Fle-
xible manufacturing Systems{Buzacott & Yao 1986). However, the analysis is mainly on the
closed queueing network(Gorden & Newell 1967) due to the fact that the results for the
closed queueing network can be directly extended to ihe other Jackson networks and that
efficieni algorithms are also available to drive both performance measures and queue length
distributions(Bruell & Batbo 1980, Reiser 1981).

Consider a closed queueing network with M stations and N jobs which are determined
by the number of pallets within the system. Station i has s; parallel servers. Each server at
station i has a service rate s4(0 <400}, i=1, +--, M, and the number of operations v;, i=
1. -+, M, assigned. Let A=vi/zs, 1=1, ---. M, be the average work requirement assigned 10
station 1, which is commonly denoted as service intensity at station {. Denote n, be the totai
number of jobs at station i(including both jobs s queue and jobs in service).

Then the throughput function of the closed queueing network can be described as

TH(N)=G(N —1)}/G(N), ‘ (2.6)
where G(N) is the normalizing constant of the closed queueing network with N jobs :
M . '
GMY=X, 1T o%/an) eh)
n!, 0=n<s;,
g(n)= { (2.8)

! 8" 5 =n,=N,
and
=2 Sy (2.9

Let X=(Xu:, X1z, ---, Xms), then we are basically concerned with studying TH(X) as a function
of X. Also notice that TH{N) and TH(Y) will be used interchangably in the sequel for the
notational convenience. Therefore the problem at hand may now be formulated as :



(P1)

Maximize TH(Y) (2.10)
s.t. S t=e (=1, ), @.11)
X;=0 and integer  (i=1, -, M & j=1, -, J). (2.12)

That is then to find a partition of the given a set of integers, e.g. @, @, -, @, such
that the throughput of the closed queueing network is maximized. Then the number of the
distinguished states of the distribution of the average work requirement of the system is

equal to the number of partitions of{e, -+, w;) operations among M stations,
M  — ’
.-13 { M;I_Tl I )M, which is equivalent to the number of evaluations of the throughput

function by the total enumeration of the states.

However, there are other constraints to be considered with respect to the tool magaz
ine capacity. That is, given the total number of slots of a tool magazine, the number of
operation types that can be assigned to station i is bounded. Suppose T is the number of
slots of the tool magazine and t; is the number of slots required by operation type j. Also
there can be some tool slot savings by assigning operations which share the same toois to
the same station.

Since the decision variable X, i=1, ---, M & j=1, ---, J, is not restricted to be 0 and
1, to formulate properly the tool magazine capacity constraints, we need to redefine each
X; as a linear combination of 0—1 variables,

= kyn (=1, M & =1, o ), (2.13)

with constraints
ﬁymél (i=1, -, M &j=1, - J) (2.14)
Cand yp=(0, 1) (=1, =+, M, j=1, -, J, k=1, -+, &). (2.15)

Therefore if :Zlyijﬁl, the operation type j is assigned to station i and ; slots are required.
Denote A={1, ---, J} to be the set of all operation types and s be the subset of A, Let

t; be the number of slots shared by all the operations in subset s. Also denote s| be the

cardinality of subset s. Then the tool magazine capacity constraints can be formulated as

1 [ 1 wdy
2y (DS Sy ST, (=1, -, M), (2.16)
Therefore, the problem can be reformulated as:
(P2)

Maximize TH(Y)

st. 2 Skyw=e (=1, -, ), (2.17)
(2.14),
(2.15),
(2.16),



where Y=(yi11, Yuz, -, YMmw)-
3. The Optimal Loading Policy

The different loading poficies have the different average work requirements of jobs
among stations. Suppose the average work requirements of jobs within the system is fixed,
that is &+ +peu=L, then a given loading policy is represented by a loading vector p=
(o1, -+, Pu}.

A known conclusion in the literature is that the balanced loading in optimal is FMSs
with single machine stations(Buzacott & Shanthikumar 1980, Shanthikumar 1982, Shanth-
ikumar & Stecke 1986, Yao 1985, 1987). Specifically, for all loading vectors g that satisfy
i£i=P1+---+PM=L, where L is given constant, the balanced loading f*=(L/M, -, L/M)
maximizes the system throughput. It is proved that the optimality of balanced loading also
hoids for FMSs with each station having the same number of multiple parallel machines
(Yao & Kim 1987a, b). However, in case of FMSs with stations of multiple parallel mac-
hines of unequal sizes, the balanced loading is not optimal(Stecke 1983), and the way to
find optimal loading has not yet studied.

Therefore, in this section we concentrate on FMSs which have a different number of
machines among stations and also on finding a method which can obtain the optimal loa-
ding solution.

The solution method we propose is an iterative procedure, finding a search direction,
and. if the gradient of the throughput, TH(N), with respect to g, i=1, -~ M, can be found,
the steepest decent method can be identified. From (2.7), we have

G(N)= ; n £™lg(m;)
—z (P™16(n)) G(N —n) (3.1)

where G(N—mn;} is normalization constant of a closed queueing network with N—n; jobs
and M —1 stations where station i is excluded.
aG(N)japi= }_._' et e(n)NGHN —n)
—(UPJZ'. i g(n YGIN —ny). (3.2)

Since (lg’G(N))nZI: ndp™fan:)) GiN—n;) is simply the mean queue length of siation I, we
have
aG(N)/api=(G(N)/£)Li(N) (3.3)
where Ly{N) is the mean queue length of station i including jobs in service when there are
n jobs in the system. Using this result, the following can be shown :
aTH(N)/a2=(a/o2)(G(n — 1)/{G(N))
=(1/AG(N)/G(N — IL{(N —1) —~L(N)
= —(TH(N)/o{LiN) —L{(N —1)}. (3.4)

In view of the deviation procedure, it is an extention of Kobayashi & Gerla{1983)'s



result in computer networks with single server stations to the FMSs with multiple parallel
machine stations.

The negative gradient in (3.4) is termed as the direction of the steepest descent, Ther-
efore, at iteration k, to increase the throughput, compute gradient(i)=(1/2{Li{N) - L{N—
1)} for i=1, ---, M, and modify 5%*V=p® _ A with max gradient(i) and p*+P=p® 4 A with
min gradient(i) and 2%*Y=£® for the other stations. As an injtial loading, ¢.z. #% empirical
study suggests that when N is large, the balanced loading is better and when N is small,
the stations which have more servers should have larger #s. However, there is no clear cut
criteria, since as the number of jobs in the system decreases, the degree of unbalancing of
the optimal loading increases.

An algorithm to find optimal loading can be summarized as follows :

0. Set k=0 let #¥ be the initial loading and compute THO(N).
1. Compute gradient(i) for all i,
and set 0"+ D=p,® — A and y=max arg{gradieni(i), i € M)
Pl V=p. O+ A and a=min arg{gradient(i), i € M}
A U=p® for all other i+y, a.
2. Compute TH**(N).
If THY (N} —TH™(N) <&, where ¢ is a properly chosen limit, stop. Else go to 3.
3. Let k=k+1 and go to 1.

Step I considers means of characterizing the set of feasible points in a neighborhood
of feasible points p¥, given the fixed average work requirement of jobs within the system.
To increase the convergence of the algorithm, some other nonlinear techniques can also be
adopted(Gill, Murray & Wright 1981). Also, A denotes step length which should be chosen
deliberately to increase the convergence. However, to be properly used, the convexity of the
throughput function is required. Though all the aumerical results show that the above alg-
orithm leads to the global optimal solution, the convexity of the thronghtput function can
not be established, and we leave it as a conjecture.

To summarize, when the number of machines is the same for all stations, the optimal
loading can easily be identified, the result of which is termed as balanced loading. When
the number of machines is different among stations, the optimal loading can be determined
by the iterative method described above, which can be termed as a unique unbalanced
loading.

4. The Loading Problem in Operational Level

In the following discussion, we concentrate on the solution procedure of problem (P
2} in section 2. To facilitate the solution procedure, an alternative loading objective can be
defined based on the result of section 3. The rationale for the new objective function is that
we want the deviation of the actual loading from the optimal loading to be smatl. One way
to accomplish this is to minmize the sum of squares of the deviations. Thus, if o is the
actual loading of station i, then the deviation of 2 from the optimal loading o* is & —o*,



i=1, ---, M, and the sum of squares of deviations to be minimized is :

M M I &,
3 (a—mY= (3 Sk —P*). 4.1
Therefore, (P2) can be modified as:
(P3) W e
Min. %(41\; sz kyix—2*)
s.t. (2.17),
(2.14),
(2.15),
(2.16).

The first approach to solve (P3) is direct application of available nonlinear mixed
integer programming techniques. Also, by utilizing the fact that all the nonlinear terms of
(P3) are products of 0—1 integer variables, the methods of linearization of the product
terms can be used. For further discussions of the solution methods of these approaches, we
refer to Stecke(1983) and references therein.

The second method is rather based on the original variable Xi. i=1, -+, M, j=1, -,
J, of formulation (P 1} and a dynamic programming formulation is developed to obtain the
optimal distribution of operations mix to stations. Combined with an approach similar to
Lawler and Bell’s method(1967), the optimal allocation of operations mix can be obtained
with the considerably smaller than the total number of possible allocations. The number
of operation types to be distributed is getting bigger, the degree of reduction of computation
increases, and the total number of computation is bounded by the total number of slots,
T, and the optimal workload, p*, =1, -+, M, in a sense.

To explain, let X=X , i=1, -+, M, and =02t i=1, o J, be the vectors of
decision variables and ®(X) be the objective function given by(gI Sjg kyiik ‘-1‘:‘1*)2 for all
station i, i=1, -++, M. The objectgve funciion to be minimized is Q(X, «*-, 1,)=Z1 @, (Xis, .
Xn. Let ©x(Au, -, {\u)=min le ®(Xy, -+, Xa) where the minimum is taken over all Xy's,
-«+, Xir's such that ZIZ %i=Ay;, j=1, -, J. Then from the principle of optimality, we have,
for i=2, ---. M,

min
Qx(An, -, A)=0=xy=Ay (DX, -, Tur)+ Qx— (A — X1, s Ay — Xu)} 4.2)
=1, -, 7
for all Ay=0, :+-, &, j=1, ===, J. The boundaries are :
QA -+, Au)=Pi(Au, -, An), 0=A =@, j=1, -, 1. {4.3)

Thenf' it is easily verified that the number of operation of the dynamic programming is 0
M o).

Let X=(X;)-1 and yi=(y;)i-1, then a vector partial ordering, X%i<Yi, is defined as X;<7v;
for ail jeA. For example, two evctors (1, 3, 2, 1) and (2, 3, 3, 2) can be ordered in the
vector partial ordering but (3, 2, 1, 1) and (2, 3, 1, 1) are noncomparable. It should be noted



that the vectors following an arbitrary vector X; be either greater than or noncomparable
with ¥ in the partial ordering. In the process of dynamic programming, at a certain stage
1, the possible states of the allocation of the operation mix consists of a set of sequence of
vectors which satisfies the vector partial ordering. For example, if the concept of array with
M dimension is used, in a looping process, the most inner loop corresponds to operation
type J and a sequence of vectors(Xu, -, Xu—1, 0), =+, (X, *~+, Xu-1, @) is a set of vectors
which can be ordered under the vector partial ordering.

Define another variable whose meaning is obvious by itself. Let &=1 if X;>>0, and d,=
0, otherwise. If d;=1, then operation type j is assigned at station i1 and d;=0, otherwis¢. Then
the constraint (2.16) of. (P 3) can be modified to:

I I
SO (-1 SL I d<T, =L, e, M), (44)

In a sequence of vectors which satisfies partial ordering if the first vector with d;;=0 doesnot
satisfy the tool magazine capacity constraint, so do the other vectors in the range, and we
can skip safely to the next uncomparable vector in the solution procedure. However if it
satisfies the constraint then try the next vector in the partial ordering, ¢.g., the first vector
with dy=1, apply the same procedure, and we may or may not skip to the next uncompa-
rable vector. If skipping is not permitted, the procedure must continue it's enumeration. This
simple rule eliminates considerable amount of states at stage 1 of the dynamic programming
procedure, and the result can be applied directly to the following stages without any further
computation. ,

The objective function of (P 3) is to make ;1 Si%; to be equal to #* as much as pos-
sible. Also it is convex in the range of sequence which satisfies the partial ordering. Hence
it is not necessary to enumerated all the vectors if it diverges much from g*. i=t, .-« M.
Let £ be a predetermined value and consider a sequence of vectors which is ordered under
the parual ordenng and szj,uisfy the tool magazine capacity. Then the following can be est-
ablished. If the value of :; Si % of the smallest vector under the partial ordering 1s greater
than @*+¢ or if the value of the largest vector is less than #* —£, then it is possible to skip
to the next uncomparable vector. Otherwise, keep in memory only those vectors with the
value of objective function whose objective function value lies within the range of p*L¢.
In other words, at each stage the states are truncated according to their values of the oby-
ective function within p*+£. Furthermokre, at stage k, k=1, ---, M, only those values of (i
(Ax1, *=+, Aw) which lie in the range of 2—. &% +& will be kept in the memory. Also, it should
be noticed that, when all the stations have the same number of machines, the results com-
puted at stage 1 can be applied through all the successive stages.

These simple rules considerably reduce the number of states at each stage and accord-
ingly the number of computations. Table 1 summarizes the logical steps following this
procedure.



Table 1
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3. A Numerical Example

Consider a FMS with 6 machines, grouped into 3 work stations. The number of mac-
hines at each station are, respectively, s1=3, s;=2, and s;=1. The number of pallets, N, is
8 which is equivalent to the total part population within the system. The tool magazine
capacity at each station(machine), T, is equal to 10.

Then the optimal long-term loading policy can be established, which is not sensitive
to fluctuations in the part types and operations mix. To generate result for this loading
problem, the algorithm in section 3 is coded in Basic and run on IBM personal computer,
and the optimal loading vector, #*, turns out to be(55.2, 32.6, 12.2) in ratio, which is unique
unbalanced loading.

Suppose, in the shori-term planning horizon, there are four part types to be manufa-
ctured. The number of operations of each type, w;, j=1, 2, 3, 4, is respectively, 10, 8, 4, and
3. Also their relative processing times, Si’s, and the numbers of tool slots required, t’s, are
respectively 6, 12, 15, 18, and 3, 4, 5, 7. Then the total workload assigned in the system
1s 270 and the optimal workloads at stations, o*'s, are 149, 88, and 33. Again, the algorithm
in section 4 is coded in Basic and run on IBM personal computer, and the optimal short-
term workload assignment can be summarized as: Xi2=7, Xn=4, Xu=6, ¥u=3, ¥3=4, ¥n=
1, and the other Xi's are all equal to zero. '

6. Conclusion

In this paper, the workload distribution problem in Flexible Manufacturing Systems
is formulated and solved from two perspectives, the long term policy and the medium and
short-term planning and control. The long-term optimal loading policy is characterized by
cither balanced loading or unigue unbalanced loading. Incorporated with the previous res-
ults, we focus on identifying the unique unbalanced loading and develope a steepest ascent
method. The optimal loading is then applied to study the optimal medium and short-term
planning and control problems. A truncated dynamic programming method is developed
which considerably reduces the number of computations to obtain the optimal allocation
of the given operations mix of part types to stations.
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