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Abstract

This paper deals with an automated storage carousel which handles work-in-
process(WIP) such as small parts for kitting. The system has been used predominately
for order picking applications. Throughput performance of the system can be meas-
ured hy the inverse of the expected order picking time. Analytic models are developed
for approximating the expected times under the “nearest-item” sequencing rule. The
performance of the models are tested through computer simulation. The gap between
the two is shown to be reasonably small.

1. Intorduction

One obvious advaniage of storage carousels compared with conventional automated
srorage/retneval(S/R) systems is that they rotate the desired bin to the operator and thus
save a considerable amount of time in traveling to search for required items, The carousel
system has been frequently used for order picking where mdividual items on an order are
sequentialiy picked by order pickers.

This paper considers such a horizontal carousel equipped with a S/R machine as shown
in Figure 1.
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Figure 1. Schematic diagram of the carousel system.

/1A

T

L | H

iy
|

In order to design the system, evaluation of system performance is an essential step.
In general, the performance is measured by the thronghput, the inverse of an expected lime
to pick an order. However, very little analytic work has been done on throughput evaluation
of the carousel system. Mardix and Sharp[6] and Stern|7] studied that subject, but the sys-
tems considered were those operated by human order pickers.

To reduce the order picking time, items on an order have to be cleverly sequenced. The
problem of optimally sequencing a given list of items Is certainly the well-known traveling
salesman problem which is NP-complete[3]. Since item sequencing must be done very freg-
uently in real-world situations, and quite often, the sequences must be determined by a small
computer, solution procedures have to be fast. In this regard. heuristics for the problem
appear o be appropriate.

Bartholdi and Platzman[1] presented the "nearest-item™ heuristic where starting from
the input/output(l/O) point the nearest item is to be picked successively. For a unit load
carousel, Han and McGinnisf4] also suggested the same heuristic to sequence retrieval and
storage orders.

In this paper, based on the nearest-item heuristic, analytic expressions are derived for
approximating the expected order picking time in the storage carousel served by a single
S/R machine. The results obtained fram the analytic models are compared with those from
Monte Carlo simulation.

2. Assumptiens

The followings are assumed throughout this paper.

1) A bidirectional carousel is served individually by a single S/R machine.

2) The conveyor length and height, its rotating speed, and the vertical speed of the S/R
machine are known.

3) The /O point is focated at the bottom front corner of the carousel.



4) The S$/R machine can move in a vertical direction while the casousel rotates(Chebyshev
travel).

5) Each bin stores only one item type and is equal in size.

6) A randomized storage assignment rule is used.

7) Only one order can be picked at a time without utilizing information on the next order.

3, Evaluation of Order Picking Time

In order picking, an order consisis of a number of items, all of which have to be ret-
rieved before the next order occurs.

The total picking time of an order can be expressed as the sum of three components
(1) the travel time during which the carousel and the S/R machine are traveling, (2) the
time during which both the carousel and the S/R machine is stopped for picking. and (3}
the time to pickup an empty coniainer at the I/O point and the time to deposit the loaded
container. Due to the Chebyshev travel, element (1), the travel time, is determined by the
maximum of the carousel rotation and the §/R machine movement times. For convenience,
element (2) in the above is ignored in this study. A simple correction should be to add an
appropriate constant which is a linear function of the number of items to the total time.
Element {3), the pickup and the deposit time can be assumed to be constant for ali cycles,
each taking the same E time units,

To facilitate the analysis, we consider a continuous approiximation to the storage rack
of the carousel. and divide the rack into two equal-sized surfaces at the I/O point. The resalt
is a normalized surface as shown in Figure 2 where a cycle of picking an order consisting
of 4 retrieval items is represented.
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Figure 2. Representation of a cycle of order picking on a normalized surface.

Assuming L/2 vx=H/vy, the shape factor in the Figure becomes :
s=(H/vv){(L{2vx)
where L=carousel rack length :



H=carousel rack height ;
vy=carousel rotaung velocity ; and
~ vv=8/R machine movement velocity in the vertical direction.
Note that due to the normalization of the rack surface, ail the time variables being
addressed hereafter have no unit.
We use the followang notation :
n =the number of items required on an order (i.e. order size) ;
e =normalized pickup(or deposit) time = Ef{L{2vy) ;
FT,, =time to retrieve the first item following the nearest-item heuristic ;
ITA(i} =i-th interleaving time between two consecutive retrieval points {see Figure 2), 1=
1, -, n—1;
IT, =total interleaving time to perform an order of size n Ig ITh(D):

RT, =returning time which is the sum of the travel time to return to the 1/O point after
picking the last item and the time to deposit the loaded container ; and
T =order picking time of an order of size n
= FTa+RT, if n=1,

FTa+3; ITo()+RT, if nz2,
© E(X) =expected value of a random variable X.

31 Single-Command Order Picking Time

For the simplest case, we will first evaluate the expected time of single-item order pic-
king based on a statistical approach.

Recall that intermittent job operation is assumed, i.e. each order is assumed to be
independently processed on a first-come-first-serve rule. In this case, the carousel conveyor
can start to rotate as soon as the S/R machine begins to pickup an empty container, and
continue to rotate while the machine travels from the IO point to the first item location.
Therefore, if we let the time tequired to pickup a container at the IfO point and move to
a random point, (X, Y). be U, then the cammulative distribution function(cdf) of U becomes

F(u)=Pr(U=u)=Pr(|X|<u) Pr(Y+e=u).

Since for randomized storage the coordinate locations are assumed to be uniformly

distributed,  priX'gw= u for 0l

I for u>1
and
Pr(Y +e=u)= (u—e)/s for e=nu=s+e
1 for u>>s+te

Thus, the cdf, F(u), and the probability density function(pdf), f(u), can be obtained as shown
in Table 1. Then, the expected value of FT, is easily computed as



E(FT)=E(U)= $*/6+es2+(1+e5)/2 0=e=]-—s
sf2+e+(1—e)fbs 1—s<e=l
s/2+e ex1
Note that the results derived above are equivalent to those made by Lee and Hwang[3].
Next, since the returning time is equal to the return iravel time plus the deposit time,
the expected returning time is given by

E(RT))=s/24e.

Tabele 1. pdf and cdf of U

Range of e Range of u F(u) f(u)
0=e=]1—s e<u=s+e (u—eu/s 2u-e)fs
s+e<us] u ]
u>l 1 —
1—s<e<] e=<u=l] (u—ejufs (2u—e)fs
l<u=s+e (u—e)fs s
u>s+e 1 -
el e<u=s-+e (u—e)fs I/s
uz>s+te 1 —

Finally, by the definition the expected single-command order picking time will be

E(T)=(FT;)+E(RT))
= s36+(1+e)s/24 (1 +e¥y2 N0=e=1l—5s
s+2e+(l —ePl6s l—s<e=l (1)
s+2e e>1

32 Dual-Command Order Picking Time

In this case, since two items are picked together by a trip of the 8/R machine, a single
interleaving between the two points occurs. Notice that due to the cylindrical form of the
carousel rack, the interleaving time will be the shorter of the clockwise and the counterclo-
ckwise interleaving time.

Han and McGinnis[4] showed that given a sample of k random interleaving times, the
smatlest of them is a random variable, Z,, with pdf;

hiz)= k{t —2z2fs+23sF (d /s — 3 2.%s%) for G <z =5
k(l —“Zk)k_l for S<Zk§1

And they evaluated the expected value of Zy, E(Z\). numerically for different combinations
of k and s.



The vxpected interleaving time under dual command, E(IT,), will then be
E(IT.=E(Zy=1/2+5%12 (2)

Next, consider the expected first-item picking time, E(FT,), under the heuristic.
Given a sample of n random points the pdf of the smallest travel time from the I/O
point, Uy, is obtained by using the results shown in Table 1:

g(un)=n{1 —F(up)y™" f{uy) up=e
Then, the expected time of U, can be obtained by
E(Un)= fung(unidun

= et(l—s—e™m+D+3 a) 0<e<]—s
eHs+e— P+ Ds"+3 agfi) —s<e£l
e+sf(n+1) e>1

where a,()=¢[(e%/4s+s+e)F ] —s—e)T17 —(e7/45) 7 ;
a(i)=c[(e¥/4s+(1 —e)/s)*PH1 —(1 —e)fs)™ ¥ —(e*/45)* ™7 ; and
e ={rs)?/20G + 1/2)] [n Y —i+1) ]

Now, the expected first-item picking time for an order of size n can be computed from the
above result

E(FTa)=E(Un) 3
and thus. the expected time under dual command,
E(FT,)=E(U,) 4

Finally in the following, the expected returning time to the IfO point will be found.
If we do not consider sequencing of items and pick them in a random manner, the expected
returning time will be equal to sf2+4e. Under the nearest-item heuristic, however, the resuit
is not valid due to the fact that the second item to be retrieved tends to be located farther
from the [/O point than the first.

Let W be a random vamnable 1o represent the return travel time to the 1/C point. that
is

W=RT.~e¢ (3)
To derive the pdf of W, r{w), we first consider the conditional distribution function of W,

R(w|uw)=Pr{W=w|U,=u),

given the first item picking time, U,=u. Using the rtesult, the ¢df, R(w), and the pdf of W
can be derived sequentially. The expected returning tme. E(RT,), of interest will then be
obtained from(5) :

E(RT,)=E(W)+e (6)
Three cases arise according to the value of e as in f(u). To illustrate the procedure,



consider the case of 0=e=1]—s.

For the randomized storage assignment rule, two retrieval points are assumed to be
distributed uniformly on the rack surface. Also, when the location of the first item is spe-
cified, the second have to be placed outside the area which is confined by the first item and
the IfO point. Hence,

(w—u(u—e))(s —ulu—el) e=ugwte
_ w(l-u)/(s—u(u—e)) wte<u=ste
Rwluy= w/s ste<u=l1l
1 T owD>s

By the definition, the cdf becomes

R(w)= fR(w|u)f(u)du
=((3s—(+e))3sIwtwiwte)/3s¥ O=Sw=s
1 w>s

And the pdf will be

r{(w)=dR(w)/dw
=(3s—{(st+ef}3s*+{d wreNw+e)/3s5° for eSw=s

Thus,
E(W)= fw r(w)dw=s{2+5%10+¢es*/4 +¢%/6
Finally from (6), we have the result
E(RT.)=s/2+e+s5*10 +es?/4 +¢€%/6 O=e<]—s )]

In the same way, the expected returning time can be obtained for both the cases of 1
—~s<e=1l and e>1 as follows:

E(RT,)= 2s{3+e—(4—15¢+20e° ~10e*+¢°)/60 % for 1 —s<(e=<1 t]
2s/34¢ for e>1

Note that the expected order picking time under dual command is represented as
E(T,)=E(FT,) +E(IT)) +E(RT,) )
Consequently, substituting the expressions (2), (4), (7) and (8) into (9) we have

E(Ty)= $fd+(1+e)s/2+e’2+4e+1 for 0=e=[-s
s12+s+2e+.5+(1 —effés for 1 —s<e=l (10)
§/12+s+2e+.5 for e>>1

33 Multi-Command Order Picking Time

Multi-command order picking involves a number of interleaving travels of the S/R
machine. Analysis of the expected order picking time can be done by the extension of the



previous dual-command analysis.
Since the number of interleaving operations is equal to n—1 when an order size is n,
the expected total interleaving time is given by

E(To)=3. E(Ta() (1)

The numerical evaluation of E(Z.) will be used to approximate the expected valuc of
1Ta(1), i=1, -, n—1 wvia the following argument.

If we have just picked the first item that is located closest to the 1/O point, the oppo-
rtunity for choosing the second is limited to the remaining n—1 retrieval items. Thus. the
corresponding expected value of ITa(1) can be approximated as E(Z,.,). On choosing the
next item to be picked, the opportunity is reduced by one. so the corresponding expected
value of ITa(2) is E(Z;-,). Continuing this process, the last interleaving will be made between
locations of the remaining two items, and therefore, E(Z,) approximates the expected value
of ITx(1).

Consequently, from expression(11) E(IT,) can be approximated as :

E(ITn){i,' E(Zn ) (12)

Under the multi-command, estimating the expected returning time in a closed form
expression 18 extremely difficult. Therefore, instead of deriving an exact value a very simple
approximation cugve 15 presented as follows :

It can be shown that the expected returning time under dual command is much longer
than that under random sequencing. For instance, when 0=e=1 —s, the amount of excessive
travel time, ERT, is given by

ERT=E(RT,)—(s/2+¢€)
=5*/10+es?/4 +se?/6

However, the excessive time would probably approach 1o zero if the order size, n, is suffi-
ciently large. Observing from expirical results that if n=40. ERT approaches to zero, we
will approximate the expected returning time, E(RTy), for the multi-command case as a
quadratic function of n:

E(RTn)= k(n—2F+kin—~2)+k,  if 2n=40
s{2+e if n>40 (13)

where kK,=ERT/1444, K.=—ERT/19, and k,=E(RT.)

Figure 3 shows an approaimation of E(RT,) where the 99 % confidence interval based
on the corresponding simulation results is depicted together. For the simulation, s and ¢
were set equal to 1.0 and 0.2, respectively, and the sample size was 1000, Observe that the
estimates from the approximation function are almost in the emiddle of the interval.

1t follows that the expected picking time, E(Tn). of an order of size n can be approx-
imated by substituting (3), (12) and (13) into the following expression :

E(Tn)=E(FTn)+E(ITh) +E(RTq).
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Figure 3. An approximation of E(RTg).

4. Comparison with Monte Carle Simulation

To assess the accuracy of the analytic models developed in this study, the nearest-item
heuristic was implemented and tested on an IBM PC/AT using Monte Carlo sampling. In
the sampling procedure, item points were randomly chosen in a normalized surface. For
each replication, n'retrieval points included in an order were generated. Then, the heuristic
was applied until n retrievals were made. For each combination of n, s, and e, a total of
1000 replications were taken.

The values of E(Ty) from the expressions derived above are plotted in Figure 4 and
5 together with the results of simulation. In Figure 4, the effect of variation in the values
of s is shown when e=0.2. Figure 5 shows the behavior of the models according to the
variation in e, given s=1.0.

" From the figures, it is observed that the performance of the analytic modeis displays
a satisfactory result with the largest deviation being 1.06 %. And their performance is shown
to be relatively insensitive to shape factor and pickup(or deposit) time.

Note that the models appear to overestimate the order picking time as the order size
increases. However, from the various computational results obtained during the study it is



shown that the percent deviation does not seriously grow with the order, or rather, it rem-
ains almost constant in some range.
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5. Conclusions

In this paper, an approach has been presented for evaluating the throughput perform-
ance of a carousel storage system. The approach is in most parts based on a statistical
approach. To sequence items in a multi-command order, the “nearesi-item” heuristic
is employed. In real-life situations, the heuristic may be fairly well used to avoid the com-
putational burden in finding an optimal routing sequence of the S/R machine.

It 18 of worth to note that the total expected time expressions for both single—and
dual—command orders are completely equivalent to those under the random sequencing
rule.

Although the analytic expressions are derived based on an approximation scheme in
some parts, they may provide useful information in first-cut evaluation of order picking
performance

References

1. Bartholdi, J.J. and Platzman. LK., “Retrieval Strategies for a Carousel Conveyor,”
HE Trans., 18(6), 166—173, 1986.

2. Bozer, Y.A. and White, J.A., “Travel-Time Models for Automated Storage/Retr-
ieval System,” IIE Trans., 16(4), 329 —337, 1984,

3. Frederickson, G.N., Hecht, M.S. and Kim, C.E., “Approximation Algorithms for
Some Routing Problems,” Siam J. Comput., 7, 178 —193, 1978, '

4. Han, M_H. and McGinnis, L.F., “Automated Werk-In-Process Carousels : Mode-
ling and Analysis,” Technical Report Tr-86-06, Material Handling Research Center,
Georgia Institute of Technoligy, 1986.

5. Lee, M.-K. and Hwang, H., “An Approach in the Design of a Unit-Load Carousel
Storage System,” Engineering Optimization, 13, 197210, 1988.

6. Mardix, I. and Sharp. G. P., “Cost and Efficiency Analysis of the Carousel Storage
System,” Technical Report Tr-85-08, Matenal Handling Research Center, Georga
Institute of Technology, 1985.

7. Stern, H.I., “Part Location and Optima! Picking Rules for a Carousel Conveyor
Automatic Storage and Retrieval System,” Proc. 7th Intl. Conf. on Automation in
Warehousing, 1986.



