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Analysis of A Two-Machine One Repairman Problem

1.

in the complexity of modern systems. These mathematical developments have drawn the

attention of many researchers who have published a host of research in the areas of optimal
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Abstract

This paper combines research in the areas of replacement and machine interference.
Although over the past three decades there has been a great deal of research in the
area of optimal replacement for stochastically deteriorating equipment and research
dealing with machine interference problems; there has been a lack of research when
these two areas are combined. However, the melding of these two well-known areas
yields a very practical problem which demands theoretical investigation.

In this paper we derive the steady state probabilities with a control limit policy for
a two-machine one repairman problem. The control policy is a simple age dependent
control described by the control limit, t*. Once t* is fixed, the steady state

probabilites that one, two, and no machines are working will be obtained.

Background

Mathematical sophistication of replacement models has increased in parallel to the growth
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replacement and preventive maintenance. Research in the machine interference problem has
taken place concurrently with the research in optimal replacement, but little attention has
been paid to the problem of optimal replacement in a machine interference setting. (Machine
interference arises when a fixed set of machines is under the care of a limited number of
repairman. If more machines need repair than the number of repairman available, the failed
machines form a queue.)

Thus. this paper opens up a new class of problems for investigation by combining research
in the areas of the replacement and machine interference. The melding of these two
well-known areas vields a very practical problem which demands theoretical investigation.
We show in this paper how to obtain the steady-state probabilities for a two-machine one
repairman problem.

One of the original replacement problems was determination of an optimal age-replacement
policy for a machine subject to failure (Ackoff and Sasieni, 1968). The problem was to deter-
mine the optimal replacement age of a machine when the two major coét considerations were
the replacement cost incurred during a plannned replacement and the larger cost incurred
if replacement was made due to machine failure. In some industrial settings there are a
limited number of repairman available so that, in practice, decisions to replace major process
equipment are made simply because repairman are idle. Such a management decision is
partially based on the desire to avoid situations where the equipment to be replaced is queued
and thus remains idle. It is often felt (intuitively) by management that it is better to replace
equipment early than to take a chance on equipment being idle because of the occurance
of more failures than there are repairman to handle the work load. However, specific
quantitative guidelines for such decisions are not presently available. (A complete survey of
replacement models is contained in Valdez-Flores and Feldman (1988) ; however, none of the
available literature deals with replacement in a machine interherence context)

Repair or replacement of equipment when a limited number of repairmen are available is
commonly called the machine interference problem, namely, a G/M/1 system with a finite

calling population. Bunday and Scraton (1980) derives the steady-state probabilities for the
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finite population G/M/r system and show that they are identical to the finile population
M/M/r system: thus, much of the work completed for the Markov machine interference
problem would seem to apply to the general failure distribution case. The problem of
allocating machines to repairmen has been extensively studied; Palm (1958) was among the
first to consider this problem. Jaiswal and Thiruvengadam (1963) and Elsayed (1981) consider
two repair policies for machine interference problems with two failure modes and repair
times. Carpenito and White (1976) extend interference problems to non-identical machines
and non-identical repairmen. These above mentioned models are designed to determine the
appropriate number of machines to assign to a repairman: however, the problem of
determining the optimal age-replacement time within the machine interference context has
not be investigated. Furthermore, once an age-based control limit is attached to the machine
interference problem, the work with an exponential failure law is no longer relevant.

The machine interference problem can also be viewed as a closed queueing network in
which a - /G/<o system feeds into a - /M/1 system which in turn feeds back into the first
system. Since this network gives rise to a reversible process, the steady-state probabilities
for the number of machines in each system is identical to the steady-state probabilities of
the system formed when the general faliure distribution is replaced by an exponential
distribution with the same mean time to failure (Kelly 1979). Difficulty again arises because
of our desire to impose control on the process. Specifically, the reversibility property is lost
when an age-dependent. control policy is imposed on the closed - /G/e <* - /M/1 network;
therefore, analyses on a - /M/c0 ¢ - /M/] are not directly applicable.

In this paper, we show how the derivation by Bundy and Scraton(1980) can be modified
to obtain the steady-state probabilities of the number of machines working under a control

limit policy.

2. The Problem

Consider a system consisting of two identical and independent machines under the care

of one repairman. The time to failure of each machine is a random variable with distribution
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funciion G. The time to replace (or totally repair) a machine is exponentially distributed with
mean time 1/1.. The control structure to be imposed on this system is a simple
age-dependent control policy described by the control limit t* where the control limit is only
operational if the repairman is idle. That is, if both machines are working, then as soon
as a machhine ages past the limit t* that machine is taken out of service for replacement.
If the repairman is busy, then the control limit is ignored and the only time a machine is
sent to the tepairman is upon failure, (We assume that the random time to replace the ma-

chine has the same in distribution for failed machines and for those taken out of service

earlv.)

3. Steady-State Probabilities

Let G be the disribution of failure times for a machine and let G=1—G. Our derivation
follows that of Bunday and Scraton(1980) and therefore we assume that the failure time
is a continuous random variable with the density function of failure times being given by
g Because the derivation of steady-state probabilities depends on the continuous assumption,
we shall approach the control limit problem as a limiting process. That is for a small ¢
greater than zero, define the following function :

G(t) for ¢t < t*,
G(t) = {¢(t) for t*<t < t*+ g
0 for t 2t*+ e,

where ¢ is a(steeply decreasing) function such that G. is continuous and once differentiable.
Thus, G. limits to the complement of the failure time distribution under the control limit t*
as € approaches zero. Finally, let z. denote the negative of the derivative of G.

The steady-state probability that both machines are operating and the age of one machine
is in the interval(t,, t,+dt,) and the age of the second machine is in the interval(t, t,+dt,)
is given by Q. (t, t,)dt.dt,, The steady-state probability that one particular machine is oper-
ating and the age of that machine is in the interval(t, t,+dt) is given by Q,(t,)dt. Finally,

the steady-state probability that no machines are operating is given by Q.(The functions Q, Q,,
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and Q, are dependent on € but we have not included the € in the subscript for ease of no-
tation).

The following equations, which are modifications of Bunday and Scraton's equations
(2.8)— (2.13), are intuitive given that s is the repair rate, g(t)/E {t) is the failure rate for
a machine of age t when only one machine is operating, and g (t)/G () is the failure rate
per machine of age t when both machines are operating. The system of equations that define
the steady-state probabilities are :

_Qz ( t,t, ) [ gz(tx) + é:(tz)

c(tl) ét(tl)

2 .3
<3tl+3t2)qz(tl't2) ] for 0 <t t,< t*+ ¢, (1)

i - _ g{(tl) e gt(s)
ST = e [ e uls [Tt Gy o e )
B _ @ g(s) .
0 = uQ zjoql(s)é(s)ds (3)
Qb o) = g0 et @)
0 if ¢ 2t'+ ¢
Q{0) = %yqo + ﬂf:’q,(s)ds. 5)

There are two major differences between our equations and the equations of Bunday and
Scraton. First, Since G. is the relevant function when two machines are working,
Equations (1) and (2) involve the function G. instedad of E Second, if only one machine
is working and that machine is older than t*+¢, then a repair will cause the older machine
to be immediately sent to the repairman; thus Eq. (5) has a term representing that possibility.

To solve this system of equations, we shall rewrite them in terms of R, R, and R, defined

by
Q(ti,t) = Ro(ti,ty)E(t)Gi(ty)
Q(t) = R.(t)G(t) (6)
Q = Ry,

Equations (1) —'(5) are now expressed in terms of R, R,and R, to become;

2 .32
(at,+at2)Rz(h.lz) = 0 for t,t,< t*+ ¢, v
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_a, = - e dl(tl)"
at, R(t) HR((t) + fo R (t,, s) (_;,(t,)g‘(S)ds for t,> g, ®)

0 = /uzo—zf R.(3)€(s) ds
']

9
HLR(L) if t <t
R.(t,,0) = ”Rl(tl)a(tl)/ é;(ll) i <t +e
0 if t2t"+e 1o
— 1 " G
R(O) = 5wk vk | RE(s)ds. ()

To solve these equations, we first note that a constant is the only solution to Eq. (7): thus,

k if bty <P+ ¢ .
Re(tit:) = § (12)

otherwise.

where k is to be determined by boundary conditions (we shall eventually use the norming

equation to obtain k).

We use Eq.(12) and the facts that [ & ()ds=1 and G:() =G(t} for t{t* to obtain

L}

-HR(t,) + k if ot < te,
2Rty = | -uR(t) + k&Y o<t e
at, b ALY (0 i ,
— MRty it 2t + e

The top and bottom branches of this equation are easily soved to obtain

=k ir ¢, <t
R(t) = g Rlt)  if <t <t + e, 13)
ke™* " if t, 2t + e,

where k, is a constant.

Wh substitute Eqs.(12) and (13) into Egs.(9) and (11) to obtain

R = = (o) + [ Ro)ee)as + ko e n(a)as)

2 © = (14)
Fk - Zklj e G(S)dts‘

Cee

R,

By setting these two equations equal to each other, we obtain the value of the constant
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k, as

k, = —ke*. (15)
u

(In solving for k,, the expression —G_(t) =fg () ds is substitued into Eq.(14)and then the order

of integration is reversed.)

The basic probabilities are now obtained by combining Eqgs. (6)-(15) and taking the limit

as € approaches zero. This yields

— ka(tl) (—;(tz) if tut,<c t*
Qz ( tl s t,z ) - 3
3 0 otherwise, (16)
kG(t,)/u it t, < te
Qe =g o 1 a”)
ke “MHIG(L) /e if ¢ >t
Qo = 2k (1— yJ‘je"“““(—}(S)ds JRL (18)

The final steady-state probabilities for the number of machines working are obtained by
integrating the above expressions over time. The final step is to observe that Q,(t,) is the
probability associated with a particular machine and since we do not care which machine
is working we have q.=2f (;OQI (s} ds. Before giving the final equations, we simplify the

expressions by defining two quantities in terms of the control limit, t¥ as
m, = j G(s)ds
0

. = f Ter1(s)ds
Thus, me is the mean time until failure for a machine operating under the control limit
and [ is similar to a(translated) Laplace transform. Therefore, the probabilities that 2,

1, or 0 machines are working is given by

q, = km} (19)
q, = 2k(m% + T,/ (20)
q = 2kl 1 - uTL.)/ &2, 21)
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where k is determined so that ¢ +¢q+¢=1L

4. CONCLUSIONS

This paper analyzed age replacement polices for a stochastically deteriorating equipment
within the context of a machine interference setting. Most replacement models reported in
the literature considered “fo replace or not lo replace” according to age of a machine only so
that the expected cost of replacement per unit time could be minimized. Once a decision
is made to replace, immediate replacement was assumed. However, previous research on
machine interference problems concentrated on assinging the appropriate number of machine
to a repairman or on finding the optimal number of repairman to numinize the system cost
for a fixed number of machines. In machine interference problems, the age replacement
policy has never been considered. The model developed in this paper combined these two
research areas. Although our attentiop was restricted to the two-machine one repairman
problem, we expect this work to stimulate further research related to the two areas.

Under the assumptions that the time to failure of each machine has a general distribution
G and the repair (or replacement) times exponentially distributed with rate s, the steady-state
probabilities were derived for a given control policy t*

This work opens up a new research area which considers traditional age replacement
problems within the context of machine interference setting. However, our work was
restricted to the two-machine one repairman problem. Thus, a possible extension to this
paper is to extend these results to an n-machine r repairmen problem for general failure
time distributions. Further research could also consider state-replacement policies instead

of age-replacement policies.
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