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Conditions for Pettis integrability

Byung Soo Lee

1. Introduction

In this paper, the long-standing question of whether f: (£, Z, p) > X
is Pettis integrable or not is discussed provided f is bounded weakly
measurable. One way in which Pettis integrability can fail, is through
lack of proper boundedness. The first example of a bounded weakly
measurable function which is not Pettis integrable was the example of
R. S. Phillips (3) in 1940. Of late, Pallares-vera (2) analyzed the Pettis
integrabiity of weakly continuous functions defined on a completely re-
gular space and taking values in a Banach space. He proved that the set
of Baire measures with respect to which such functions are universally
Pettis integrable is precisely the space of Grothendieck measures intro-
duced by Wheeler (6).

The purpose of this paper is to characterize the conditions of Pettis
integrability of a bounded weakly measurable function defined on a finite
measure space using the continuity of its Stonian transform. We use
some results on f to derive conditions for Pettis integrability expressed
in terms of f and  alone. It leads to conditions for Pettis integrability
expressed in terms of X* and X***. We obtain the equivalence condi-
tions of both f and T are Pettis integrable provided that (Q), X, p) is a
finite measure space. Especially we obtain that f and T are both Pettis
integrable if and only if there is a subset M of §, u(M) = 0 such that
£*** 2(s) = £*"7H(s) for all x*** ¢ X*** and all s ¢ S-M.
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Z. Preliminaries

Let S denote the Stone representation space of the complete Boolean
algerbra Z/p"(0), where (2, T, u) is a finite measure space. Thus S
is compact, hyperstonian, and has the countable chain condition on open
sets. Let for A ¢ =, [A] denote its equivalence class and a the correspo-
nding clopen subsets of S, that is a 1s the clopen counterpart of
(A+u)(0) in S. We denote the identification of L°(, T, ) with C
(S), a Banach algebra with a uniform norm, by [h1— h, a norm isome-
try for & scalar function h. By (5, Thm 4.6), g on £/ '(0) has a unique
Borel representation i on S of the functional ¢(h) = [oh du on C(5).
Thus if [h] ¢ L*(Q, =, p), then b dii = fi h dp for all AeX and for
all scalar function h. We shall replace ji by p and write f; i dy for integ-
rals over subset a of S and thus also write [, h dpp = [zh dp. As long
as expressions involve integration or measure, A and a, and [h] and f
are indistinguishable. Similarly the natural isometry between L'(Q, p)
and L'(S, p) are denoted by h— f for a scalar function h.

Define now the Stoman transformf: S = (X**, 6{X**, X*)), the se-
cond (topological) dual of 2 Banach space X, which is given the
o(X**, X*) — topology, of a bounded weakly measurable function f : (£,
T, p) = X by <1(s), x*> = £°¥(s) for all x* ¢X. and for all s¢S. In
this paper, for each finite subset A of X and each ¢>0, H{(A,e) = {x*f:
Hx*{ <1, Ix*(x) | <e VxeA, and fx*f > n>0}.

3. Conditions for Pettis integrability expressed in terms of fand Q.

Let {F,G> be a duality. For any subset H of F, ' ={y ¢ G:
{xy? <1,Vxe H} is a subset of G, called the polar set of F. Let+ ande
denote polarity with respect to <X.X*)> and (X*X**) respectively.

The following result, called the bipolar theorem, is a consequence of
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the Hahn-Banach theorem and is an indispensable tool in working with
dualities.

Lemama 2.1. (Bipolar theorem (4)). Let {F,G> be a duality. For any
subset M CF, the bipolar of M is the o(F,G) — closed, convex hull of
M{0}.

Lemma 2.2. Let h ¢ L*(), Z, p). For each s in S, h(s) = lim
ess sup h(w) = hm(l/ 1(B))fh dyt, where the limit is taken through the
nelghborhood fllter of clopen sets b in S corresponding ioc B ¢ X, contai-
ning s.

Lemma 2.3. Let f be a bounded and weakly measurable function from
a finite measure space ({2, I, p) to a Banach space X. If 2 1s a non-em-
pty clopen subset of S, then

{f@}° = {(1/p(B)) * x** : BCA, u(B)>0}° in X*.

Proof. Let x* e{f(a)}®, then V 1(s) £ 1(a), <« Hs), x*> < 1. Let
B CA and pB>0.
Hence x*{{(1/p(B))xs**)
= (1/u(B)) x*(x*")
= (/pnBN<&x:s*", x*>
= (1/u(B)) fex*f dp
= (1/u(b)) fixtdu< L
Thus x* e{(1/p(B))x** : BCA, uB>0}.
conversely, if x*((1/p(B))xe**) < 1 for all B CA, u(B)>0, then for a fi-
xed s £ a,
x*H(s) = Im (1/u(b))fx*T dp
bishCa

= lim I/ uBNfex*f< L
blsbCa
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Hence x* & {{(a)}"

Lemma 2.4, Let X = {x** ! x"* is in the weak® closure of a counta-
ble subset of X}. Then f is Pettis integrable if and only if (caf(2))NX
#¢ for every non-empty clopen subset a of S.

Proof. Suppose f is not Pettis integrable over {}.

Then the Dunford integral x,** is not o(X**X*)-contiuous on {x* :
| x* il < 1}. Hence n>0 such that each H(Ag) is non-empty. Choosing
y* such that fy*f> 1> 0. Since y*? is continuous, there exists a none-
mpty clopen set a in S with y*T(s)> 1n/2 for all sga.

Choose Xe (@ 3@)NX, so that y*(%) > 7/2. Let C = {x.} be a e
quence in X, containing % containing % in its weak’-closure, Choose z*
such that z*(%) = 0(since z* | ¢ = 0), and 2*(%) > /2 (since 2*f=7vy"
D), a contradiction. A similar proof holds if f is not Pettis integrable over
some measurable subset E of (2.

Conversely, by the Hahn-Banach theorem

(1/u(A))xa**e co 1(a) Hence Pettis integrability yields a non-empty
intersection.

Theorem 2.5. If { : {Q, £, w) =X is bounded and weakly measurable,
(€, Z, u) is a finite measure space, and X is a Banach space, then the
following are equivalent.

(a) { is Pettis integrable.

(b) {Ha)}*= {x*e X* |y v ¢ }a), {yx*> <1} is o(X*X)-closed in

X*.
(© Ha)" = {x* ¢ X" 1V y ¢ ¥a), {yx*> =0} is o(X*X)-closed in
Xt

(d) {x* ¢ X* 1V ye i), {yx*) =20} is o(X* X)-closed in X*.

(e) HS)* 1 o(X*X)-closed in X"

) {x*eX" x*f < 1ae onAce Z} is 6(X*X)-closed in X*.
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(@ {x* e X* x*f=0 ae. on A & T} is o(X* X)-closed in X*.
(h) {x* ¢ X*: x*f>ae on A ¢ T} is o(X* X)-~closed in X'.
(i) {x* e X*:x"f=0 ae. on N} is o(X* X)-closed in X*.

for all clopen sets a in S and for all corresponding A in X.

Proof. (a} —> (b) Suppose (x*.) is a sequence in {{(a)}° converging
x* over X. If x*T>1, then by continuity there exists clopen set a such
that x*T(a)-1 > a>0(or < a < 0). Hence (x*cof(a)) = 1+a. If f is
Peitis integrable then co 1(a) X is non-empty. Hence there exists x in
co f(@) X, thus {x*x>>1. But <x% x> <1 for all a. Hence {x*x) <
1. This is a contradiction. Hence{f(a)}°® is 6{(X* X)-closed in X".

(b) — (a) Assume that C = #(a)° is o(X*,X)-closed in X*. Let D = C,
then D = CnX = Ha@)®nX = co(f(a)u{0} )X, by the bipolar theo-
rem ; here co denotes the o(X**X*)-closed convex hull. Since {(a) is
ofX** X" )compact, co F@u{0}) = {Ax**0<A=sLx**eco f(a}].

(1) If D= {0}, then D'= {0} = X* and D'= C, since C is o(X*X)-
closed, and hence C = {0} and so (a) Ct(a)® = C" = {0}. Thus co a)
NX#6.

(ii) If D properly contains 0, then {Ax** 1 0<h <1, x** £ cot@in
X+0¢, and so co f(a)nX is not empty.

Thus f 1s Pettis integrable.

(¢) — (a) Assume f is not Pettis integrable.

Choose y* ¢ X* sucht that [ly* | <1 and y*f ¢ H(A,) for each fi-
nite subset A of X and each £>0, then

T={y* +HS*In{x* Ix*ll <1} isc(X*X)-closed in X*. Choose
2* ¢ X* for each countable subset C of X such that z* | C = 0 and
z*f = y*{, then 2*-y" belongs to f(8)", so z* belongs to T. Since T is
o{X* X)-closed, This implies that O ¢ T.

This is a contradiction, since y*f is not identically zero.
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Theorem 2.6. Let (2, =, y) be a finite measure space, X a Banach
space, and f a bounded weakly measurable function on (€2, Z, ) to X,
then the following are equivalent.
(a) f is weakly equivalent to a strongly measurable function
(b) there is a subset M of S, W(M) = 0, such that x***i(s)
= £ *"1(s) for all x*** ¢ X*** and all s ¢ S-M

(c) f:92—>Xandt:S—>X"" are both Pettis integrable. In this case,
(p) fuf dp equals to (p) [, T dyu for each A& %, and a
= A + p0)eS.

Proof. (2) — (b) By hypothesis, there is_a.subset M of S, p(M) = 0.
such that f(S-M) CX./Fix x*** and s ¢ S-M. Let x* = x*** { X then
x***Hs) = x'K(s) = X°fs) = £ {(5)

)= Let X* = {x*** ! x"** | X =0}, then X*** =X OX". If
x"** & X*, then x***f(w) = 0 for all w € £ so ¥***f(s) = 0 for all s
in S. Then x***({(s)) = 0 for all a in S-M, and so }{(S-M) CX* =X.
Hence f is strongly measurable, thus f is weakly equivalent to a strongly
measurable function.

(b) = (c) Let (x3) beaboundedsetinX*. Ifxtf< 1 a.e. on N
and (x¥) 15 6(X* X)-convergent to x*, theneachxtf< 1 on S. Let
x*** be a o(X*** X**)-cluster point of (x%), then x***f<1 on §,
and so x'/;'\f <1 ae. on 5, hence everywhere on S by continuity.

Now x*** | X =x*, so we get x* f<1 ae. on Q. Thus f is Pettis
integrable, by theorem 25. Since fx*** T du = Lxmf dg = faix***f dy
=rx'fdp e X CX**. Hence f is Pettis integrable.

(¢) > (b) If both f and T are Pettis integrable (implying that f is
X***-measurable into X**), (p)fuf dp = (p)Jif dp. If not, choosing an x*
which separates (p) {if dp and (p) {if du leads to a contradiction. Thus,
fixing x*** and letting a be clopen set in S,

Lx"‘f dp = % " x) = x (k) = Xttt((p)fa?dp) —
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P dp) = fx™"*f dp :j}x{‘\’f dy. Hence x***1 = X7t ae. on
S.

Lemma 2.7. Let (£, X, p) be a fimte measure space, X a Banach
space, and f a bounded weakly measurable function from (Q, £, p) to
X. Consider

T:X* - LY, p) defined by T(x*) = x*f and

T: X' > L'(Su) defined by T(x*) = x*], then

(1 TG = TG

(2) T*() = T*(), % and Xx are the characteristic functions.

Proof. (1) ’1{(}) =r=xt= T
(2) T O)x*) = Go, T = Gux'D = fix'T = [ix*f = Gux*D
= {xa, Tx*) = (T*(x) x*> for all x* ¢ X*. Hence T*(X) = T*(xs).

Theorem 2.8. Let f be a bounded and weakly measurable function
from a finite measure space (3, Z, w) to a Banach space X. Then the
following are equivalent,

(a) f is Pettis integrable

() T X" =0

(&) T"*(x***) =%x"**f ae. on S.

Proof. {a) - (b) Assume that f is Pettis integrable, then f is weak®-
to weak-continuous. Hence T is a weakly compact operator (1), so the
range of T** is in L'Y(Q, ). Then if A ¢ £ and x*** ¢ X*, {T**(x***),
x> = M T () = <t () f dw = 0.

Hence T**(X*) = 0.

B> () In case x*** & X* then <IT**(x***), %>
=& T = &7, T () = KT (&™), 0> =<0, = 0.
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Hence T**(x***) = 0. On the other hand, if x*** ¢ X", then x*** | X
= 0, Hence x***f =0 for all x*** such that x*** | X =90. Thus T**
x***) = ¥ ae.on S.
Gi) If x*** is an arbitrary member of X*** = X* ® X", and x***
= x" + x* be the canonical decomposition, then T**(x***) = T**(x*
+ x)=T G+ T ) = T (*) + 0=T"*(x*). Hence (T“(/{"'),
w =T, w = &8, T () = (T, w0 =< %) = &M,
=<>?/;;\f, %) for all clopen set a in S.Hence T**(x***)= "%t ae. on S.
(¢) = (a) Suppose that f is not Pettis integrable. that, xa** ¥ X.
Choose x*** ¢ X*, x***(0A") =1 Then T (x***) = =0 ae
on S. Hence
1= 0 =&, T00) =T ("), x> =0.
This is a contradiction.

Theorem 2.9. Let (Q, ¥, u) be a finite measure space, X a Banach
space, and f a bounded weakly measurable function on (€, X, p) to X.

Then each of the following implies next.

(a) f is weakly equivalent to a strongly measurable function.
() x***¥(s) = &*7Ks) ae. on S for each x***.

(c) f is Pettis integrable.
(@) 1(S)* 1s 6(X*X)-closed in X*

Theorem 2.10. Let f: (£, £, uw) > X be a bounded weakly measura-
ble function on a {0, 1}-measure space.
Then the following are equivalent.

(a) f is weakly equivalent to a strongly measurable function.

() x***(s) = £ *¥(s) ae. on S for each x***

(c) f is Pettis integrable

(@) 18" is o(X*, X)-closed in X".
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Proof. (a) ~> (b) = {¢) = (d) hold for any finite measure space, by
the preceding results.

(d) = (a) Suppese that (2, Z, u) is a {0,1}-valued measure space.
Then the measure algebra £/p'(0) is {{¢],[Q]}, and the Stome space
S consists of a single point se = {{3]}. A bounded function f: (Q, %,
w to X is weakly measurable if and only if x*f has a constant value
c{x*) ae. for each x* ¢ X*. The range of the Dunford integral contains
(at most) 2 pomts, xa** and 0. Also, T(s) (x*) = H(s0) = lim ess sup
x*f(w) = c{x*) = fox*f dp = x"*(x*). Thus ¥(S) is the smg!eton
Ixa™}.

Smce x7*  (0) = {xa**}* , HS)(0) = {xa*}". Hence i 5 (0)
is o(X*X)closed, so %.** is o(X* X)-contiuous on X*. Thus [ is weakly
equivalent to a constant function.
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