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Optimality and Duality for Vector
Optimization Problems

Gue Myung Lee and Do Sang Kim
1. Introduction

M.A. Hanson [3] defined the invex function which is a generalization
of the convex function, proved that the Kuhn-Tucker conditions are suf-
ficient for a solution of the scalar optimization problem concerning invex
functions and establisbed Wolfe [10] duality theorems for this problem.
RN. Kaul and S. Kaur [5] established optimality cniteria in the scalar
optimization problem involving pseudo-invex functions and guasi-invex
functions. Very recently, RR. Egudo [2] showed that Wolfe type duality
theorems hold for the vector optimization problem which consists of p-
convex functions which defined by 1P. Vial [8]. D.S. Kim and GM. Lee
[6] established that Wolfe type duality theorems hold for the vector op-
timization problem which consists of invex functions.

In this paper, we prove that the Kuhn-Tucker optimality conditions are
sufficient for an efficient solution of the vector optimization problem
which consists of pseudoinvex functions and establish Wolfe type duality
theorems for this problem.

2. Definitions
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Throughout this paper, we use the following conventions ; Let R® be
a p-dimension] Euclidean space, x={(x;"*,x,)'¢ R®, and
y={y, 5} eR.

1.x<y if and only if XSy, 1= p
2. X<y if and only if xSyand x£y.
3. x%y is the negation of x <y.

Definition 2.1. A differentiable function h: R"—R is pseudo-invex
with respect to n of and only if there exists a vector valued function n
defined on R" X R® such that for all x, ueR"

Vh(wn(x, u)Z 0 implies h(x)= h(u).

Definition 2.2. A differentiable function h . R"R is quasi-invex with
respect to v if and only if there exists a vector valued function 1 defined
on R*XR® such that for all x, ugR",

h(x)= h(u) implies Vh(wn(xuw)=0

We consider the vector optimization problem 3

(P) Miminize f{x)
subject to xeX={xeR" . g(x) < 0},

where f . R*™R® and g : R">R" are differentiable functions.

In relation to (P), we consider the following vector optimization prob-
lem.

The Wolfe vector dual of (P) [10];

(D) Maximize f(x)+yg(x)e

subject to(x, A, y)e¥Y = {{x, A, y) : VAT(x) + Vy'g(x) = o, y= 0, AeA"},

where e=(1,,1)'eR®* and A'={reR®: r>0, rfe=1}.

Optimization in (P) and (D) means obtaining efficient solutions for
the corresponding problems. T. Weir {9] first considered the above dual
problems of (P).
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Definition 1.3. 1. A point % €X is an efficient solution for (P) if and
only if for any xeX, f(x) £f(%).

2. A point (X,%, 7)Y is an efficient solution for (D) if and only if
for any(x, A, y)eY,

@) +7 gX) edf(x) +y g(x)e.
3. Optimality Conditions

Now, we consider optimality conditions for an efficient solution for

(P).

3.1. Suppose that there-exist i. > 0, AsR’, y,eR' such that
(1) Nfty'g is pseudo-invex w.rt. m,
(2) for all xeX, [VAI(R) +Vyie(®) In(x, )20,
(3) g)=0,
where I={i : g(X)=0}.
Then, X is an efficient solution for (P).

Proof. Suppose that X is not an efficient solution for {P). Then there
exists x* & R" such that

f(x*)—f(X)< 0 and g(x*)£0.
Hence we have
f(x*)— ()< 0 and g(x")-gX)=0.
Thus, we have
M) +Hvig(x®) < AR +Hyig(®).
By the definition of pseudo-invexity, we have

[VAER) +Vyig ()] 7 (x*, %) <0,
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which contradicts the assumption (2).

Lemma 3.1 {1]. X is an efficient solution for {P) if and only if X
is a solution for the following scalar optimization problems ;

(P)  Minimize f(x)
subject to f(x) < £(%) for all j=i, g(x) =0,

for each i=1,--p.

From Lemma 3.1, we can prove the following theorem by the method
similar to the proof in Theorem 3.4 of {4].

Theorem 3.2. If % is an efficient solution for (P) and if we assume
that % satisfies a constraint qualification ([7]) for (P), i=1,-,p, then
there exist 7eA* and 72 0, yeR™ sucht that VA' f(X)+Vy* g(xX) = 0
and ¥ g(X)=0.

4. Duality Theorems

Now we establish duality theorems for (P) and (D).

Theorem 4.1. If, for all xeX and (u, A, y)eY, (1) f+yg is pseudo-in -
vex w.r.t. n for all i:or (2) Af+yg is pseudo-invex w.rt. v, then

f(x) £ f(w) +y'glule.

Proof. (1) Let xeX and (uA, y)eY. Suppose that f(x)=< f(u) + y'g
(we.

Then for some i, f(x) < f(u)+y'g(u) and for all j, j»i, £(x) < f,(u)
+yig{u).

Since f+y'g pseudo-invex w.rt. v and £(x) +y'g(x) < f(u) +yglw),
we have

[ vi{u) +vyguw)] 1 (x, w) <O0.
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Since f+y'g is quasi-invex w.r.t. n and £(x) +yg(x)2 f(u) +y'glu),
we have

[VE(w +Vyg(w] n (x, W) < 0.
Thus,

[Vk‘f(u)+Vy’g(u)] n (x, u) <0
This is a contradiction.

(2) Let xeX and (x, A, y)eY. Suppose that f(x)< f(u) +y'g(u)e.
Then

f(x) +yglx)e< f(u) +yglu)e.

Moreover,

Af(x) +yg(x) < Rf(u) +y'gw).

By the pseudo-invexity of AN{+y'g, we have

[vrf(w) +vyg(w)] n (3, u) < 0.

This is a contradiction.

Theorem 4.2 Let X is an efficient solution for (P} and assume that
X satisfies a constraint ([71) for (P}, i=1,-p. Then there exist and
¥ sucht that(X, T, 7)€Y and the objective values of (P} and (D) are
equal. If, also, (1) £+7' g is pseudo-invex w.r.t. n for alf i or (2) T'
+7'g is pseudo-invex w.rt. n, then (%, %, ¥) is an efficient solution for
(D).

Proof. By Theorem 3.2, there exist 3¢ A" and ¥2 0, e R™ such
that V3f(X)+Vy'g(X)=o0 and §'g(X)=0. Thus (%, %, V) ¢ Y. Since
v'g(X) =0, the objective values of (P) and (D) are equal. Suppose that
(X, %, V) is not an efficient solution for (D). Then there exists

(u*, A%, y*)eY such that
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1

(@) +yg@e= f(u*) +y"glue.
By the similar method of Theorem 4.1, we can prove that
[VA*f(u*) + vy g(u)] n & .u*) <O.

This is a contradiction.
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