THE COMPLETE RELATIONS OF TYPES FOR A HIGHER ORDER TYPE-THEORETIC LANGUAGE

Hyang Il Yi

1. Introduction

The Language L_T under consideration is called "type-theoretic" because its syntax is based on Russell's simple theory of types, probably most closely resembling the version of type theory in Church(1940). L_T will contain both constants and variables in syntax, and it will allow quantification over variabes of any category.

We recall the concept of L_T recursively.

- (1) e is a type.
- (2) t is a type
- (3) If a and b are any types, then $\langle a,b \rangle$ is a type.
- (4) Nothing else is a type.

In other words,

e is a term, t is a formulas, $\langle e,t \rangle$ is a one-place predicates and $\langle e,\langle e,t \rangle$ is a two-place predicates.

2. Type model D of a higher-order type language

Let's construct a type model D of a higher-order type theoretic language L_T . Let E be a singleton of type e. Starting from $D_o = \{t\}$ a chain

of approximations of a type model D is built by defining

$$D_{n+1} = E + \langle D_n, D_n \rangle$$

where + represents disjoint sum and $\langle D_n, D_n \rangle$ is the space of all continuous mappings from D_n to D_n , and embedding each D_n in D_{n+1} by a suitable projection pair (i_n, P_n) of D_n on D_{n+1} where $i_n : D_n \rightarrow D_{n+1}$,

 $P_n:D_{n+1}{\to}D_n \text{ with the properties } P_n\circ I_n=id_{Dn},\ I_n\circ P_n\subseteq id_{Dn+1}.$

If $d\epsilon D_n$, we identify d with $i_{nz}(d)\epsilon D$.

There we can assume

$$D_{\circ} \subseteq D_{\iota} \subseteq \cdots \subseteq D_{n} \subseteq \cdots \subseteq D.$$

Let d_n stand for $i_{n\infty} \circ P_{\infty n}(d)$. It holds

$$\mathbf{d}_{\mathbf{n}} = \mathbf{i}_{\mathbf{n} \mathbf{x} \mathbf{0}} \circ \mathbf{P}_{\mathbf{x} \mathbf{0} \mathbf{n}}(\mathbf{d}) \subseteq \mathbf{d}.$$

Also if $d\epsilon D_a$, then $d_\alpha = d$. Now we may take the type model D of L_T into account of the equational form

$$D = E + \langle D, D \rangle$$
.

Defining a partial ordering \leq on D_n by $d \leq f$ if and only if $d(a) \leq -f(a)$ for all $a\epsilon D_n$, the set of all continuous functions from D_n to D_n is a complete partial ordered set and the disjoint sum of $E + \langle D_n, D_n \rangle$ is a complete one, too.

3. Complete relations on the model D

Definition 2.1

- A binary relation R ⊆ D×D is ω-complete if and only if (U⟨d⁽ⁱ⁾⟩_{15ω}, U⟨f⁽ⁱ⁾⟩_{15ω} εR whenever for all iεω, (d⁽ⁱ⁾, f⁽ⁱ⁾⟩εR where ⟨d⁽ⁱ⁾⟩_{15ω}, ⟨f⁽ⁱ⁾⟩_{15ω} are increasing chains in D.
- (2) $R \subseteq D \times D$ is complete if and only if R is ω -complete and $(t,t) \in R$.

Proposition 2.1 The following properties of D hold:

(1)
$$d_0 = t$$
.

- (2) If asE, then for all $n \ge 1$ a = a_n .
- (3) If $d\varepsilon D$, $\langle d_n \rangle_{n\varepsilon\omega}$ is an increasing chain in D and $d = U \langle d_n \rangle_{n\varepsilon\omega}$.
- (4) If $f \in \langle D,D \rangle$, then $f_{n+3}(d) = f_{n+1}(d_n) \in D_n$.
- (5) If $f_{\varepsilon}(D,D)$, then $(f(d_n))_n = f_{n+1}(d_n)$.

Let $K = \{k_1, k_2, \dots, k_m\}$ be a set of basic predetermined types of D and Φ a set of type variables. The set T of types is defined by:

- (1) K, Φ ⊆ T.
- (2) If α , $\beta \epsilon T$ then $\beta(\alpha) \epsilon T$
- (3) If α, βεT then ¬αεT, α∧ βεT, α∨ βεT, α→βεT and α→βεT.
- (4) If αεT, αεΦ, then VζαεT and ΗζαεT for all ζεΦ.

Now we define a relation $R(\alpha) \subseteq D \times D$ for each term α of the set T° of closed types. We set the α in the form

$$\alpha = Q_i \zeta_i \cdot \dots \cdot Q_n \zeta_n \alpha'$$

where α' is either a basic type K, or a type of the logical forms. Let us define the scope size $l(\alpha) = n$.

- (i) $l(\exists \zeta \alpha) > l(\alpha[\exists \zeta \alpha/\zeta])$
- (ii) $l(\forall \zeta \alpha) > l(\alpha [\gamma/\zeta])$ for all types γ .

R(a) is built by successive approximations in the following way.

Definition 2.2 Let K₁,···,K_n be complete relations over D.

- (1) $R(\alpha)_n \subseteq D_n \times D_n(\alpha \epsilon T^n, n>0$ | is defined by:
 - (a) $R(\alpha)_0 = \{(t,t)\}\$ for all $\alpha \epsilon T^0$.
 - (b) $R(K)^{n+1} = K'$
 - (c) $(d_1,d_2) \in R(\beta(\alpha))_{n+1} \hookrightarrow d_i \in \langle D,D \rangle_{n+1}$ or $d_i = t(i=1,2)$ and for all $(f_1,f_2) \in R(\alpha)_n$, $(d_1(f_1),d_2(f_2)) \in R(\beta(\alpha))_{n-1}$ (if $d_i = t$, then $d_i(f_i) = t$).
 - (d) $(d_1,d_2) \in \mathbb{R}(\neg \alpha)_{n+1} \hookrightarrow d_i \in \langle D,D \rangle_{n+1}$ or $d_i = t(i=1,2)$ and for all $(f_1,f_2) \in \mathbb{R}(\neg \alpha)_n, (d_1(f_1),d_2(f_2)) \notin \mathbb{R}(\alpha)_n$.

(e)
$$(d_1,d_2) \in \mathbb{R}(\alpha \wedge \beta)_{n+1} \longleftrightarrow (d_1,d_2) \in \mathbb{R}(\alpha)_{n+1}$$
 and $(d_1,d_2) \in \mathbb{R}(\beta)_{n+1}$.

(f)
$$(d_1,d_2) \in \mathbb{R}(\alpha \vee \beta)_{n+1} \longleftrightarrow (d_1,d_2) \in \mathbb{R}(\alpha)_{n+1}$$
 or $(d_1,d_2) \in \mathbb{R}(\beta)_{n+1}$.

(g)
$$(d_1,d_2) \in \mathbb{R}(\alpha \rightarrow \beta)_{n+1} \leftrightarrow d_i \in \langle D,D \rangle_{n+1}$$
 or $d_i = t(i = 1,2)$ and for all $(f_i,f_2) \in \mathbb{R}(\alpha)_n$, $(d_1(f_1),d_2(f_2)) \in \mathbb{R}(\beta)_n$.

$$\begin{array}{c} \text{(h)} \ (d_1,d_2)\epsilon R(\alpha{\leftrightarrow}\beta)_{n+1}{\longleftrightarrow} (d_1,d_2)\epsilon R(\alpha{\to}\beta)_{n+1} \ \text{and} \\ \\ (d_1,d_2)\epsilon R(\beta{\to}\alpha)_{n+1}. \end{array}$$

(i)
$$(d_1,d_2) \in \mathbb{R}(\forall \zeta \alpha)_{n+1} \hookrightarrow \text{for all } \gamma \in T^n,$$

 $(d_1,d_2) \in \mathbb{R}(\alpha[\gamma/\zeta])_{n+1}.$

- (j) $(d_1,d_2)\epsilon R(\Xi \zeta \alpha)_{\alpha+1} \leftrightarrow (d_1,d_2)\epsilon R(\alpha[\Xi \zeta \alpha/\zeta])_{\alpha+1}$
- (2) $(d_n f) \in \mathbb{R}(\alpha) \hookrightarrow \text{for all } n, (d_n, f_n) \in \mathbb{R}(\alpha)_n$.

Now the following results can be obtained from the definition 2.2.

Theorem 2.1. It holds the following:

- (1) $R(\alpha)_n \subseteq R(\alpha)_{n+1}$.
- (2) If $(d,f) \subseteq R(\alpha)_{n+1}$, then $(d_n,f_n) \in R(\alpha)_n$.
- (3) $R(\alpha)_n \subseteq R(\alpha)$.

Proof. The third assertion is an immediate consequence of (1) and (2). Let's use the simultaneous induction on $l(\alpha)$. For n = 0 the proof is trivial. If α is the one of basic types, i.e., $l(\alpha) = 0$ then (1) follows by definition 2.2 (1)~(b) and (2) follows by proposition 2.1,(2).

Let us consider the case of formulations. Let $\gamma \equiv \beta(\alpha)$ $(l(\gamma) = 0)$.

(1) Let $(d,f) \in R(\beta(\alpha))_n$ and take $(a,b) \in R(\alpha)_n$.

We have $d(a) = d(a_{n-1})$, $f(b) = f(b_{n-1})$ by proposition 2.1,(4). By(2) We have $(a_{n-1}, b_{n-1}) \in R(\alpha)_{n-1}$ and therefore by (1)

$$(d(a),f(b))\varepsilon R(\beta(\alpha))_{n-2}\subseteq R(\beta(\alpha))_{n-1}.$$

Hence (d, f) $\epsilon R(\beta(\alpha))_{n+1}$.

(2) Let $(d,f) \in R(\beta(\alpha))_{n+1}$. Take $(a, b) \in R(\alpha)_{n-1} \subseteq R(\alpha)_n$ by (1). Hence

we have $(d(a),f(b))\epsilon R(\beta(\alpha))_{n-2}$. And by (2), $((d(a))_{n-1}, (f(b))_{n-1})\epsilon R(\beta(\alpha))_{n-2} \subseteq R(\beta(\alpha))_{n-1}$. Now by proposition 2.1 (5), it holds $d_n(a) = (d(a))_{n-1}, f_n(b) = (f(b))_{n-1}.$ Hence $(d_n,f_n)\epsilon R(\beta(\alpha))_n$.

In the case of disjunction and conjunction, (1) and (2) follow by the definition 2.2 (1) \sim (e), (f). The proof of cases $\neg \alpha$, $\alpha \rightarrow \beta$ and $\alpha \rightarrow \beta$ is similarly to the case of formulation $\beta(\alpha)$. Finally the cases of quantification is proved by induction on $l(\alpha)$ and the properties of scope size since

 $(d,f) \in \mathbb{R}(\forall \zeta \alpha)_n$ if and only if $\forall \gamma \in \mathbb{T}^n$, $(d,f) \in \mathbb{R}(\alpha[\gamma/\zeta])_n$. and $(d,f) \in \mathbb{R}(\exists \zeta \alpha))_n$ if and only if $(d,f) \in \mathbb{R}(\alpha[\exists \zeta \alpha/\zeta])_n$.

 Anderews P., An Introduction to Mathematical Logic and Type Theory to Truth Through proof, Academic press, 1986

REFERENCES

- Barwise J. et al., Topoi, The categorical Analysis of Voric, SLFM Vol. 98., North-Holland, 1984.
- Coppo M, A completeness Theorem for Recursively Defined Types, Proc. of ICALP '85, Lecture Notes in Computer Science 194, Spinger-Verlag, 120~130, 1985
- 4 Coppo M., Zacchi M., Type Inference and Logical Relations, Proc. of Symposium on Logic computer Science, Cambridge, massachusetts, 218~226, 1986.
- Lambek J., From Types to Sets, Advances in Math. 36, 113~64, 1980
- Milner R, A Theory of Type Polymorphism in Programming, J Comp. System Sci. 17. 348~375, 1978.
- 7. Reynolds J., On the Relations Between Direct and Continuation Semantics, Proc.

of ICALP 74, Lecture Notes in computer Science 14, 141~156, 1974.

 Scott D., Domains for Denotational Semantics, Proc. of ICALP 82, Lecture Notes in Computer Science 140, Springer-Verlag, 577~613, 1982.

Department of Applied Mathematics National Fisheries University of Pusan Pusan 608~737 Korea