On Singular Compactifications

Keun Park and Je Yoon Lee

1. Introduction

In [8], J.P.Guglielmi proposed the open question under which condition on X, αX is equal to $\sup\{X \cup S(f) \mid \alpha X \supseteq \cup_{f \in S} S(f)\}$ for any compactification αX of X. Since $\alpha X \supseteq \cup_{f \in S} S(f)$ if and only if $f \in S^*$, J.P.Guglielmi's problem can be restated as follows: Under which condition on X, is αX equal to $\sup\{X \cup S(f) \mid f \in S^*\}$ for any compactification αX of X? R.E.Chandler[4] showed that if X is non-pseudocompact, then the Stone-Cech compactification of X is equal to $\sup\{X \cup S(f) \mid f \in S^*\}$ and also he showed that if X is a retractive space, then the Stone-Cech compactification of X is equal to $\sup\{X \cup S(f) \mid f \in S^*\}$.

In this note, we give some conditions under which αX is equal to $\sup\{X \cup S(f) \mid f \in S^*\}$ for any compactification αX of X, and give some examples.

2. Singular compactifications

Throughout this note, the topological space X is assumed to be locally compact and all topological spaces are assumed to be Hausdorff.

In [2], the singular set $S(f)$ is defined as $\bigcap \{\text{Cl}(f(X-F)) \mid F \text{ is compact in } X\}$ for a continuous map of X to Y, where "Cl" denotes the closure operator. And f is called singular if $S(f) = Y$. For a singular

The work supported by the Korean Ministry of Education grants 1989.
map \(f \) of \(X \) to a compacce space \(Y \), a Hausdorff compactification, which is called a singular compactification, is defined as follows:

Let the open sets in \(X \) be as they were in the original topology on \(X \). For \(p \in Y \), a basic neighborhood of \(p \) is defined to be any set of the form \(U \cup f^{-1}(U) \) where \(U \) is an open neighborhood of \(p \) in \(Y \). This topological space on \(X \cup S(f) = X \cup Y \) is denoted by \(X \cup S(f) \) (\([4],[5]\)).

We will denote \(C^*(X) \) the set of all continuous and bounded map of \(X \) to \(\mathbb{R} \) (the real line with the usual topology) and \(C^* \) the set of all continuous and bounded maps of \(X \) to \(\mathbb{R} \) with the extension to a Hausdorff compactification \(\alpha X \) of \(X \). Let \(S^* = \{ f \in C^*(X) \mid f \) is singular \(\} \) \(S^n = \{ f \in C^* \mid f \) is singular \(\} \) for any compactification \(\alpha X \) of \(X \). Then, it is true that \(S^* \neq \emptyset \) and \(S^n \neq \emptyset \) since all constant map are singular.

In 1982, B.J. Ball and S. Yokura([1]) introduced the concept of determining set. For each subset \(F \) of \(C^*(X) \), let \(K(F) \) be the subfamily of the family of all Hausdorff compactifications of \(X \) such that \(K(F) \) consists of all compactifications of \(X \) to which each element of \(F \) can be extended. If \(K(F) \) has the smallest element \(\alpha X \), then \(\alpha X \) is said to be determined by \(F \), and denoted by \(\alpha_F X \). It is easily shown that every subset of \(C^*(X) \) determines a compactification of \(X \) if \(X \) is locally compact. And then, he showed the following theorem.

Theorem 2.1 [1]. For any subset \(F \) of \(C^*(X) \) and any compactification \(\alpha X \) of \(X \), the followings are equivalent.

1. \(F \) determines a compactification and \(\alpha_F X = \alpha X \).
2. \(F \subset C^* \) and \(F^* \) separates points of \(\alpha X - X \) where \(F^* \) is the subset \(\{ f^* \in C^*(\alpha X) : f^* \) is an extension of \(f \) and \(f \in F \} \) of \(C^*(\alpha X) \).
Theorem 2.2. Let $f \in C^*$. Then, $X \cup S(f)$ is the smallest compactification of X to which f can be extended.

Proof. Let $\alpha X = X \cup S(f)$ and define $f^* : \alpha X \to S(f)$ given by $f^*(x) = f(x)$ if $x \in X$ and $f^*(x) = x$ otherwise. Then, it is easily shown that f^* is a continuous extension of f and it is trivial that f^* separates points of $\alpha X - X$. Since X is locally compact, αX is the smallest compactification of X to which f can be extended, by theorem 2.1.

Corollary 2.3. For any subset F of S^*, $\sup\{X \cup S(f) \mid f \in F\}$ is the smallest compactification of X to which F can be extended.

Proof. Since $\sup\{X \cup S(f) \mid f \in F\} \geq X \cup S(f)$ for any f in F, it follows that F can be extended to $\sup\{X \cup S(f) \mid f \in F\}$. If αX is a Hausdorff compactification of X to which F can be extended, then for any f in F, $\alpha X \geq X \cup S(f)$ by theorem 2.2. Hence, we have that $\alpha X \geq \{X \cup S(f) \mid f \in F\}$, and so $\sup\{X \cup S(f) \mid f \in F\}$ is the smallest compactification of X to which F can be extended.

Using above Theorem 2.1 and Corollary 2.3, we obtain the following corollary which is proved by R.E. Chandler and G.D. Faulkner[4].

Corollary 2.4. $\alpha X = \sup\{X \cup S(f) \mid f \in S^*\}$ if and only if $f^* \in C^*(\alpha X)$ $| f^*$ is an extension of f and $f \in S^* |$ separates points of $\alpha X - X$.

3. Main results

For a completely regular space X, X is called a retractive space if and only if there is a retraction of βX onto $\beta X - X$.
Theorem 3.1[4]. If \(X \) is a retractive space, then \(X \) is locally compact and pseudocompact.

Lemma 3.2[8]. For a compactification \(\alpha X \) of \(X \), \(\alpha X \) is a singular compactification if and only if there exists a retraction of \(\alpha X \) onto \(\alpha X - X \).

Theorem 3.3[4]. If \(X \) is non-pseudocompact, then

\[
\beta X = \sup \{ X \cup S(f) \mid f \in S^* \}.
\]

We generalize the theorem of R.E.Chandler: "If \(X \) is a retractive space, then \(\beta X = \sup \{ X \cup S(f) \mid f \in S^* \} \)." and give some answers on the problem given by J.P.Guglielmi.

Theorem 3.4. If \(\alpha X \) is a singular compactification, then \(\alpha X \) is equal to \(\sup \{ X \cup S(f) \mid f \in S^* \} \).

Proof. Suppose that \(h \) is a singular map of \(X \) to \(Y \) where \(S(h) = Y \) is compact and \(\alpha X = X \cup hS(h) \). Since the compact space \(Y \) is embeddable to the cube, there exists and embedding \(\pi \) of \(Y \) to \(\prod_{\lambda \in \Lambda} I_\lambda \) where and \(I_\lambda \) is a closed interval in \(R \). For any \(\lambda \in \Lambda \), let \(p_\lambda : \prod_{\lambda \in \Lambda} I_\lambda \to I_\lambda \) be a projection and let \(F = \{ p_\lambda \circ \pi \circ h \mid \lambda \in \Lambda \} \). Then, it is obvious that \(F \) is a subset of \(C^*(X) \). Since \(\alpha X = X \cup hS(h) \), there exists unique extension \(h^* \) of \(h \) to \(\alpha X \) with \(h^*(\alpha X) = Y \). Hence, we have that for any \(\lambda \in \Lambda \), \(p_\lambda \circ \pi \circ h^* \) is an extension of \(p_\lambda \circ \pi \circ h \) to \(\alpha X \). And so, \(p_\lambda \circ \pi \circ h \in C_\lambda \). Next, we will show that \(p_\lambda \circ \pi \circ h \) is singular.

Let \(Z = \text{Cl}(p_\lambda \circ \pi(Y)) \), then \(Z \) is compact since it is closed in the compact space \(I_\lambda \). For any compact subset \(A \) of \(X \),

\[
Z \supset \text{Cl}(p_\lambda \circ \pi \circ h(X - A)) = \text{Cl}(\text{Cl}(p_\lambda \circ \pi \circ h(X - A)))
\]
\[\subseteq \text{Cl}(\alpha \circ \pi(\text{Cl}(h(X-A)))) \] since \(p_A \) is continuous

\[= \text{Cl}(\alpha \circ \pi(Y)) \] since \(h \) is singular

\[= Z. \]

Hence, we have that \(Z = \cap \{ \text{Cl}(\alpha \circ \pi \circ h(X-A)) \mid A \text{ is compact in } X \} \). Therefore, for any \(\lambda \in \Lambda, p_A \circ \pi \circ h \) is singular. Finally, we will show that \(F^* = \{ f^* \mid f^* \text{ is an extension of } f \text{ to } \alpha X, f \in F \} \) separates points of \(\alpha X - X \), that is, for any \(y_1, y_2(\neq) \in \alpha X - X \), there exists a \(\lambda \in \Lambda \) such that \((p_A \circ \pi \circ h)^*(y_1) \neq (p_A \circ \pi \circ h)^*(y_2) \) where \((p_A \circ \pi \circ h) \) is an extension of \(p_A \circ \pi \circ h \) to \(\alpha X \). In the above progress, we know that \(h^*(y_1) = y_1 \) and \(h^*(y_2) = y_2 \) since \(y_1, y_2 \in \alpha X - X \) and \(\alpha X = X \cup \text{S}(h) \).

Since \(\pi \) is embedding, we have that \(\pi(y_1) \neq \pi(y_2) \). Since \(p_A \circ \pi \circ h \) is an extension of \(p_A \circ \pi \circ h \) and the extension is unique, \((p_A \circ \pi \circ h)^* \) is equal to \(p_A \circ \pi \circ h \). The fact that \(\pi(y_1) \neq \pi(y_2) \) implies that there is a \(\lambda \in \Lambda \) such that \(p_A \circ \pi(y_1) \neq p_A \circ \pi(y_2) \), and so \((p_A \circ \pi \circ h)^*(y_1)p_A \circ \pi \circ h^*(y_2) = (p_A \circ \pi \circ h)^*(y_2) \). Hence, \(F^* \) separates points of \(\alpha X - X \). Therefore, by Corollary 2.4, \(\alpha X = \sup \{ X \cup S(f) \mid f \in F \} \). But since \(F \subseteq S^* \), \(\alpha X = \sup \{ X \cup S(f) \mid f \in F \} \leq \sup \{ X \cup S(f) \mid f \in S^* \} \) and so, \(\alpha X = \sup \{ X \cup S(f) \mid f \in S^* \} \) because of \(\sup \{ X \cup S(f) \mid f \in S^* \} \leq \alpha X \) by Corollary 2.3. This completes the proof.

Corollary 3.5. If \(X \) is a retractive space, then \(\alpha X = \sup \{ X \cup S(f) \mid f \in S^* \} \) for any compactification \(\alpha X \) of \(X \).

Proof. Let \(r \) be a retraction of \(\beta X \) to \(\beta X - X \) and let \(\phi \) be the natural projection of \(\beta X \) to \(\alpha X \). Define \(r' : \alpha X \to \alpha X - X \) given by \(r' = \phi \mid_{\alpha X - X} \circ r \circ \phi \). Then, it is obvious that \(r' \) is well-defined, continuous map with \(r' |_{\alpha X - X} = 1_{\alpha X - X} \). Hence, \(\alpha X = \sup \{ X \cup S(f) \mid f \in S^* \} \) by Lemma 3.2 and Theorem 3.4.
We obtain R. E. Chandler's Theorem as a Corollary.

Corollary 3.6. If X is a retractive space, then the Stone-Cech Compactification βX of X is equal to $\sup\{X \cup S(f) \mid f \in S^*\}$.

In above, we showed that if X is a retractive space, then $\alpha X=\sup\{X \cup S(f) \mid f \in S^*\}$ for any compactification αX, and this implies that $\beta X=\sup\{X \cup S(f) \mid f \in S^*\}$. But, the converses don't hold as you see in examples below. First, we give an example in which $\beta X=\sup\{X \cup S(f) \mid f \in S^*\}$, but $\alpha X\neq\sup\{X \cup S(f) \mid f \in S^*\}$ for some compactification αX of X.

Example 3.7. Let $X=\mathbb{R}$ with the usual topology. Since \mathbb{R} is non-pseudocompact, $\beta X=\sup\{X \cup S(f) \mid f \in S^*\}$ by Theorem 3.3. Let αX be the compactification of X with two points remainder. If αX is a singular compactification, then there exists a singular map $f: X \rightarrow \{a, b\}$. Then, $f(X)=\{a\}$ or $f(X)=\{b\}$ since \mathbb{R} is connected and f is continuous. But this contradicts to $\text{Cl}(f(X))=\{a, b\}$. Hence, αX is not a singular compactification. If $\alpha X=\sup\{X \cup S(f) \mid f \in S^*\}$, then $X \cup S(f) \leq \alpha X$ for any f in S^*, and so, $X \cup S(f)$ is the one-point compactification for any $f \in S^*$. Hence, $\alpha X=\sup\{X \cup S(f) \mid f \in S^*\}$ is the one-point compactification, which is a contradiction.

Next, we give an example in which X is not a retractive space, but $\alpha X=\sup\{X \cup S(f) \mid f \in S^*\}$ for any compactification αX of X.

Lemma 3.8[4]. If $f \in C^*$, then $f^*(\alpha X-X)=S(f)$.

Recall that a directed set Λ is a partially ordered set with the following property: for any $\alpha, \beta \in \Lambda$, there is a λ in Λ such that $\alpha \leq \lambda$ and $\beta \leq \lambda$.
Lemma 3.9[9] Let X be a compact space, Λ a directed set and A_α a closed, connected and non-empty subset of X for any $\alpha \in \Lambda$. If $A_\beta \subseteq A_\alpha$ for $\alpha, \beta \in \Lambda$ with $\beta \leq \alpha$, then $\bigcap_{\alpha \in \Lambda} A^\alpha$ is connected.

Example 3.10. Let $X = [0, \infty)$ with the usual topology. Then, X is not a retractive space by Theorem 3.1, since X is not pseudocompact. First, we will show that $aX - X = \bigcap_{\alpha=1}^{\infty} \text{Cl}_a(X_a)$ for any compactification aX of X where $X_\alpha = [n, \infty)$. Since $aX = \text{Cl}_a(X) = \text{Cl}_a(X_a) \cup [0, n]$ and $[0, n] \subseteq X$, we have that $aX = \text{Cl}_a(X_a) \cup [0, n] - X \subseteq \text{Cl}_a(X_a)$. Hence, $aX - X \subseteq \bigcap_{\alpha=1}^{\infty} \text{Cl}_a(X_a)$. For converse, if $x \in X$, then there exists an open neighborhood U of x in X such that $\text{Cl}_a(U)$ is compact since X is locally compact. And there exists an n in \mathbb{N} such that $\text{Cl}_a(U) \subseteq [0, n]$. And so, $x \not\in \text{Cl}_a(X - \text{Cl}_a(U))$ and $\text{Cl}_a(X - \text{Cl}_a(U)) \supseteq \text{Cl}_a(X - [0, n]) = \text{Cl}_a(X_a)$. Hence, $aX - X \supseteq \text{Cl}_a(X_a) \supseteq \bigcap_{\alpha=1}^{\infty} \text{Cl}_a(X_a)$. Since X_α is connected for any α, we have that $aX - X$ is connected for any compactification aX of X by Lemma 3.9. Given compactification aX of X, let $p, q(\neq) \in aX - X$, then there exists a continuous map f from aX to $[0, 1]$ with $f(p) = 0$ and $f(q) = 1$. Since f is continuous and $aX - X$ is connected, $f(aX - X)$ is connected. Because of $f(a - X) \in [0, 1]$, $f(p) = 0$ and $f(q) = 1$, we have that $f(aX - X) = [0, 1]$. Let $g = f|_{aX}$. Since g has an extension f to aX, by Lemma 3.8, $S(g) = f(aX - X) = [0, 1]$. Hence, we have that g is a singular map. And so, g is an element of S^* and $f(p) \neq f(q)$. Therefore, S^* separates points of $aX - X$. By Corollary 2.4, we know that $aX = \sup \{X \cup S(f) \mid f \in S^*\}$.
References

Department of Mathematics
University of Ulsan