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I. Introduction

Let G be a semutopological semigroup 1e. G is a semigroup with
a Hausdorif topology such that for each s € G the mappings s —> as
and s = sa from G to G are continuous. G is called right reversible
if any two closed left ideals of G have nonvoid intersection. In this
case, (G, >) is a dwected system when the binary relation “ >"on
G is defined by txs if and only if

{thuGtC{stuGs,

for all t, s € G. Right reversible semitopological semigroups include
all commutative semigroups and all semitopological semigroups which
are right amenable as discrete semigroups [18]. Left reversibility
of G is defined similarly. G is called reversible if it is both left
and right reversible,

Let C be a nonempty closed convex subset of a Banach space
X with norm || - | and let T be a mapping from C into itself.
T is said to be a Lipschitzian mapping if for each n) 1 there exists
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a real number k.>0 such that
ITx—~Ty it (kM x—y

for all x, y € C. A Lipschitzian mapping is said to be nonexpansive
if Ka=1 for all n>1 and asymptotically nonexpansive if rllgg K.
=1, respectively [10].
A family {={S(t):t ©G} of mappings from C into itself is said
to be a continuous representation of G on C if { satisfies the following ;
(D) Stex=S()S(s)x for all t, s € G and x € C,
(2) For every x & C, the mapping (s, x) > S(s)x from GxC
into C is continuous when GxC has the product topology.
A continuous representation { of G on C is said to be a Lipschitzian
semigroup on C if each t € G, there exists K:>0 such that

1Sx — Syl < Kllx—yl

for all x, y €C.
The first nonlinear ergodic theorem for nonexpansive mappings
was established by Baillon (1]1:Let C be a closed convex subset

of a real Hilbert space H and T a nomexpansive mapping from C
into itself. If the set F(T) of fixed points of T is nonempty, then
for each x € C, the Cesaro mean

1 n—1
Sx== X Tx
it k=0

converges weakly to some y € F(T). In thus case, putting y=Px for
each x€C, P is a nonexpansive retraction of C onto F(T) such
that PT=TP=P and Px € conv {Tx:n}1} for each x €C,
where convA is the closure of the convex hull of A. And later extened
to Banach spaces Bruck {6], Hirano [14], Reich [25], and others.
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A corresponding result for nonexpansive semigroups on C was given
.by Baillon {2], Baillon—Brezis [3] and Reich [24]. Nonlinear ergodic
theorems for general commutative semigroups of nonexpansive mappings
were given by Breis—Browder (4], Hirano— Takahashi {163 and Hi-
rano—Kido— Takahashi [17].

In [26], Takahashi proved the following nonlinear ergodic theorem
for a noncommutative semigroup of nonexpansive mappings - Let C
be a nonempty closed convex subset of a real Hilbert space H,
and let S be an amenable semigroup of nonexpansive mappings t
from C into itself. Suppose the set F(S) of all common fixed points
of t €S is nonempty. Then there exists a nonexpansive retraction
P of C onto F(S) such that Pt=tP=9P for ol 1 & S and Px
€ conv {tx -t € S}. Furthermore, Hirano— Takahashi [15] extended
this result to a Banach space. And, Lau — Takahashi [20] also proved
the same result for a reversible semigruop of nonexpansive mappings
in Banach spaces. Recently, Ishihara - Takahashi [19] proved the existe-
nce of the ergodic retraction for a reversible semigroup of Lipschitziam
mappings in Hilbert spaces.

In this paper, we would like to extend the results of Ishihara-
Takahashi to uniformly convex Banach spaces with a Frechet differen-
tiable norm. Our proofs employ the methods of Hirano - Takahashi
[15] Ishihara - Takahashi [19], Miyadera - Kobayashi {22], Takahashi-
Zhang [27] and Lau - Takahashi [201.

II. Preliminaries and Notations

Let X be a Banach space with the norm || - [ and X* its dual
Then, the value of x* € X* at x € X will be denoted by {x,
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x*). With each x &€ X, we associate the set
Jo={x* € X*: {x, x*>={xiF=1x*%.

Using the Hahn-Banach theorem, it is immediately clear that J(x) = ¢
for each x € X. The multivalued mapping J: X —X* is called
the duality mapping of X. Let B={x &€ X: lixll =1} stand for
the unit sphere of X. Then the norm of X is said to be Gateaux
differentiable (and X is said to be smooth) if

!i_glol“x—tyl]—lixli
t
exists for each x and y in B. It is said to be Frechet differentiable
if for each x in B, this limit is attained uniformly for y in B,
It is well known that if X is smooth, then the duality mapping
J is single-valued. And we also know that if the norm of X is
Frechet differentiable, then ] is norm to norm continuous. (see [5],
{9] for more details.)
For x and y in X, Sgm[x, yl denotes the set

{Ax+1—2A)y:0¢ A (1}

In this paper, unless other specified, X will denote a uniformly
convex Banach space with modulus of convexity &. The modulus
of convexity of X is the function & :[0, 2] —[0. 11 defined
by

s@=infl1-72 < Ixl <1, Byl (1 =yl ) el

for 0(e{2 X is uniformly convex if and only if 8(e)>0 for £)0
(€73, [9] and [23]). It is known that & is nondecreasing ((13], {211
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and [28]). Hence if X is uniformly convex and & (e.) = 0, then & — 0.
. Lemmas and Propositions
In this section, we prove serveral lemmas and propositions which

are crucial for our purpose in next section.

Lemma 1. Let C be a closed convex subset of a uniformly
convex Banach space X. Let G be a right reversible semitopological
semigroup and {={S(t):t & G} a Lipschitzzan semigroup on C
with limsup kggl. If £ & F(K), then there exists the limit of

1SHx—1fi for all x & C.
Proof. Since, for all t € G,

i sx—fll < 1 Sx—S®Se)x i + Il S&)Stsyx—1 |
{ FS(Hx—Sa)x il +k I S(e)x—f 1

for each x € C and s € G Taking the lim sup as t and fixed
s, we obtain

lin%sup i sx—11 ¢ (lxn;csuph) Il Ssyx—1l
¢ U S(ex—1H

for all s € G. Taking the liminf as s, we have
limtsup Il Stx—fl { liIPinf I S(s)x—f i
This completes the proof

Proposition 2. Let X, C, G and { be as in Lemma 1. Then
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£ s nonempty if and only if {S{t)x:t € G} is bounded for
any x € (. Furthermore, F{{) is a closed and convex subset of
C.

Proof. Suppose that {S()x:t & G} is bounded for any x €
C. Since X is uniformly convex, there exists a unique asymptotic
center a with respect to C L11] such that

Iin'{sup Is®x—al € linisup it Stx—z i
for all z € C—{a}. On the other hand, since for all s € G
il S(st)x—S(s)z Il §K. I Sx —~ all,
takmg limsup as s, we have

limsup il S(s)x—S(s)a g(lin:sup k) Il St)x — al
{Fswx—all

Taking limsup as t, then we obtain
limtsup 1 Sttyx—SHa ll € limsup I Stx—all

This implies that ¢ € F(). The converse follows from Lemma 1.
The closedness of F({) is obvious from the continuity of the elements
of {. To show convesity of F({), it is sufficient to show that z=(x+y)/2
EF) for all x, y € FE. Let x, y € F{, z=(xty)/2 and
x7y. Then we have

lith(t)z =z

If not, there exists £ 0 such that for any t € G, there is ¢ €
G with ¢t 2 t and
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Fst)z — zlf e

Choose d > 0 so small that

4¢

R+d

where R={lx —yll >0 and & is the modulus of convexity of X.

Since limtsupk‘ { 1, it follows that there is tt € G such that
kil x—yil { #x—yil +d

for all t 3= to Put u=[S(ts)z—x]/2, v={y—S(t )z—x1/2 for t& > t.

Then we have,

R+d) [1+§( )1 <R,

vl =3l y=S@ )zl &gl x|
1
SR+,

and
ffu—vi = Sttd )z~ z i
&

Since X is uniformly convex,

utv 1 - €
1Y drrali-s5]

1

ER

and hence
k=L x—yi=1utvi Gr

4 Y=y 4

This is a contradiction. Hence we have
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]_imS(t)Zzz.
Therefore, we have

S(s)z = I}mS(S)S(t)z
= l?nS(t)z
= ]{mS(t)z

=z
This completes the proof.

The next lemma is known [12]. It is a simple consequence of
the definition of the modulus of convexity.

Lemma 3. Let X be a uniformly convex Banach space with
modulus of convexity 5. If Il xIl {r, iyl {r,r{Rand lx—yll ) e(>
0), then

I+ a=ny I {rl1-2a-08E)]
for all <AL

the proofs of our following lemmas are based on methods used
in [14] and [20].

Lemma 4. Let X, C, G and & be as in Lemma 1. Let X be
in C, f € F( and 0{a{P<{1 Then for any ¢)0, there exists
te € G such that

[l SIAS(s)x+ A —)f] — [AS®)S(s)x+ (1 —A)f] I <e
for all s, t » t and a{A{B.

Proof. Let £0, ¢ = mm{2A1—4): a {1 {B}
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ana ¢ =max{2M(1-2) 1 a{A{B}. By Lemma 1, li[n I Sx—fl exi-
sts. Put r= li{n  St)x—f)l for any f € FQ). Since G is right
reversible and lirr%sup k{1, rziElf fSwx—fll. If r=0, then there
exists &, € G such that

i Styx — £l <'§Tc’

for all t » t,, where M =ts>|:1%k,. Hence, for s, tpt, and 0<AK
1,

il SEAS(s)x+ (1 —A)f] — EASE®)S(s)x+ (1 —A)f1 i
AN SEASEx+ (X~ — SH)S(s)x] |t
+ (1= SOIASEx+ A~
Ak ASEe)x+ (1~ W) — S(E)x i
+A Mk § AS(s)x+ A —f—fIf
= 201~ Wk I} S(e)x—£ |l
<Ml Se)x—f I
{e.

Now, let r> 0. Since & is nondecreasing, for given €0, we can
choose d?0 so small that

(r+d) fl—oﬁ(ﬁ%ﬂ {r,

where 8 is the modulus of convexity of the norm. And also, since
r = lip fi Ste)x—fll and limsupk, {1, there exists tt € G such that

kl Se)x—fh {r+d

for all s, t >= t. For some A with aglgﬁ, we put u = (1—2) [St)z—1]
v = A S@®S(s)x—S(t)z] where z=AS(s)x+(1—A)f. Then, we have
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lull CQ=Wk Ml z—£ 1
= M1-Mk I S(s)x—£1l
{MA~A)c+d)
Gura,

vl Okl Steyx—z
= Mi—-Mk I S(s)x— £l
(%(r-l' d),

and
To—vll = S®IASE)x+ @ — A1~ [ASOSE)x+ @ -2 I .

Suppose that lfu—vll ¢ for some 70, then by Lemma 3,

M- SOSEx— £ = I Au+(1—Av i
(M-t L -2a01 - MBCEE]
M-NE+ - oS
{AA—M)r.

And hence,

I s®sEx—fll (r
for s, t > t. This is a contradiction to the fact that r = ing s
(t)x—fll. This completes the proof.

The following lemma is a direct consequence of Lau-Takahashi

{203.

Lemma 5. Let C be a closed convex subset of a uniformly
convex Banach space X with a Frechet differentiable norm and {S(Ox : t
€ G} a bounded net in C. Let 2 GQQG conv {S{t)x:t > to},
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y € C and {P} a net of element in C with P.€Sgmly, S{t)x,
and fiP—zll = min{ fu—=zll :ueSgmly, St)x]} If {P} converges
strongly to y as t, then y=z

By using Lemma 4 and Lemma 5, we can prove the following
lemma.

Lemma 6. Let X be a uniformly convex Banach space with
a Frechet differentiable norm. Let C, G and { be as in Lemma

1 and {S(thx't €& G} a bounded net for some x € C. Then
for any

z € 0 conv {Sthx t > siNFE) and v & FQ,
there exists to ¢ G such that
Stx—y, Iy—z» (0
for all t = ta

Proof. If y=z or x=y, then the result 15 obvious. So, let y#z
and x=y. For any t & G, taking a umque element P, € Sgm
Ly, S{t)x] such that

HP~zll =min{ tu—z§ u C Sgmly, Stx]}.

Then, since y#w, {P} doesn't converge to y from Lemma 5. Hence,
we obtain ¢)0 such that for any t & G, there is t & G with
t » t and

Setting Pr=0aSt)x + (1—-a)y, 0 & {1, then there exists ¢ ) 0 so smal
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that o) ¢ (in fact, since x#y and y € F(©,

C {p—yll = llaSE)x + Q—a)y—y
Lok b x—yll.

Hence, put c;lﬁ;”, where K=31{pla. Letting K= Ii{n il Sx—y
i, we have K> 0. If not, then we have li{nS(t)x=y, and so li{n
P.=y which contradicts. Now, we can choose r>Q with K > r such
that

R_

R—¢
where 5 is “the modolus of convexity of the norm and R= |l z—y i
(>0). Fix ¢<e. Then by Lemma 4, there exists t, such that

YD)

i S(s)eSE®x+1—c)yl—L cSESEOx—(1— )yl Il ((£ &)

for all s, tx> t. Fix t € G with >t and HP—yldc
Then, since a2c, (70), we have

[F e SEx+(1—c)y i

Sy + S -~
=2y + - LatSEx+(1—at)y]

€ sgmly, Pr])
Put J&E~‘~ Then we have
at

Il cSt)x+Q—c)y
= | Ay +(1—=A)P—z |
hlly=z# +@-0lP—zl
(hlly—zi +Q-nlly—2z!
=R.
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Hence we obtain

| ¢ SES)x+(1—c)y—2z |
¢ SE)leStx+ 1 —c)yl—LeSE)SWx+a—c)yl
+ I Se)leStx+1~c)yl—z |l
(ko eSEx+I—c)y—z il +e,
g kR+e,

for all s, t » t. Since limtsup k{1, there exists t € G such
that kR+e {(R+e for all sy= t.. Furthermore, Since li.{n i Stx—y
Il =K>r, there exwsts t; € G such that | SOx—yll >r for all

tZt. Now, let tt €G with &t»=t, i=1, 2, 3 and fix ¢ > t. Then

we have

I S(e)SMHx+ (1 —c)y—z i { kR+e
R+eg
for all s > t. On the other hand, since
fly—zlIl =R{R+¢

and

I oo SE)SMx+ (A~ )y—zl—(y—2) I| =co i S()St)x—y i

=¢o |l S(st)x—y i
200t

for all s 2= t, by uniform convexity, we have
I 5S@SEx+a— =z

= %- Il {eo SRS+ (1o )y+2z]+ (y—2) |l
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{R+¢g) [1_5321_'2)}

(R
for all s = t.
Letting u, =5*SESEx+1A—3 )y, since ~ hu—zld= lly=zl,
we have
| utaly—uw)~zIl =t Q—au)+ay—z]

=l a—D@E—u)+taly—2)
2ally—zll —@-Dll z—u.l
dally—zl —@-Dly—zI
=ly—z

for all o) 1. Hence, by Theorem 25 in [8], we have
{utaly—u)—y, Jy—zP 20
for all @21, and hence
Cu—y, Jy—2z» {0
for all s > t. Therefore

7 (S@SOx—y, Jy—2
=<§°~S(s)sm A5y =y, Iy
<0

and hence
SESt)x—y, Jy—zp 0

for all s > to. Let t >= ¢. Then, t € {t} UGt. Since we may
assume that t & Gt, there exists a net {g} €G with gt —t
Therefore, we obtain
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Sx~y, y—zp {0
for all t > t. This completes the proof.

New, we prove the following proposition which play a crucial role
in the proof of our main theorem in this paper.

Proposition 7. Let C be a clased convex subset of a uniformly
convex Banach space X with a Frehet differentiable norm, G a right
reversible semitopological semigroup and {={S(t) :t € G} a Lipschit-
zian semigroup on C with

Iin}su;iag 1

If {St)x:t & G} is bounded for any x € C, then the set
n Gc_o'ﬁ’{S(t)x ‘'t = s} FE). consists of at most one point.

Proof Let v, zegcconv {SMx : t 2= s}NFK). Then, since (y+2)
/2 € F©, it follows from Lemma 6 that there is tt € G such
that

<S(tto)x— . J(y Z—2» <0
for every t € G. Since v & conv {S(tt)x:t & G} we have

<Y‘“ ; J( 22 {0

and hence

{y—z Jy—z> {0
This tmplies y=z.



24 Jong Kyu Kim and Ki Sik Ha

V. Nonlinear Erogodic Theorem

Now, we can prove a nonlinear ergodic theorem for reversible
semigroups of Lipschitzian mappings in uniformly convex Banach spaces
with a Frechet differentiable norm.

Theorem 8. Let C be a closed convex subset of a uniformly
convex Banach space X with a Frechet differentiable norm and let
G be a right reversible semitopological semigroup. Let {={S(t):t
& G} be a Lipschitzian semigroup on C with lirr{sup k{1 If {S
x 't € G} is bounded for any x € C, then the following statemvents
are equivélent :

(I)SQGCW {Stx 't 3= s;NFE is nonempty for each x &C,

(2) There exists a retraction (ergodic retraction) P of C onto

F@ such that PS) = S®)P =P for all t € G and Px €
conv {St)xt € G} for every x & C.

Proof. {(2)==(1). Since S(t)Px=Px for all x € C and t €
G, Px € F({). And also, since G is right reversible, t » s implies
the existence of a net {g.) &G such that gs —t. Then we have

Px=PS(s)x € conv {S(OS(e)x:t € G}
=conv {S(t)x t > s}

for all s € G. Hence we have

Px € 0, conv {Sx:t = sinFE.



Nonhinear Ergodic Theorems For Reversible Semigroups of
Lipschitzian Mappings in Uniformly Convex Banach Spaces 25

(1) =(2). Let x & C. By Proposition 7,
[} ooy {Sthx 't > sINFEQ is a singleton. Hence, for each x

g C, define a function P: C—-*S&corw {Sx:t 2= sin FQ=
{z} by Px =z Then P is welldefined on C and it is a retraction
of C onto F{{}) and

Px € conv {S)x:t & G}
For all t € C, SP = P is obvious. Furthermore, let s € G and
tt € G be fixed. Since if t = 5, t € {s}UGs. Then we have
tte € {stoluU Gste and hence ity 3= st. Therefore, we obtain

{SWStIx ¢t »= s} €{SMWx:h > sbl.

and also

{SOS(t)x -t 2= sl €{Shx:h > sk}

On the other hand, if h 3= st, then h & (st} Gsto.
If hst, then
S(h)x = S(s)S(to)x & {S(OSE)x - ¢ 2= s}.

i h &€ Gst, then there is a net {g} G such that gst, —>h.
So S(h)=liam S(g.sto), hence

S(h)x €{S®St)x * t »= s}

Therefore, we have

{Shix ' h > st} €{SOSt)x © t 2= s}.

Consequently, we have conv {S(h)x:@ h 3= sts = conviSH)S{t)x - t
s}.
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Hence, if z € nconv {S(th)x . t »= s}, then z ESQGc—oE? {S(h)
X . h st = Q;conv {SHS(t)x : t >= s}.

Therefore, n conv {S(Hhx 1t >= s} GQ; conv {S(S(t)x -t == s} for
t € G be f xed. Hence, we have g conv [SOSt)x:t 3= siNF
© = conv {S(Ox 1t 2= slNFE.

Therefore, for &%t € G, we have

PS(te)x = Px
for each x € C. Hence PSt) =P for all t & G. This completes
the proof.
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