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I. Introduction

Let G be a semitopological semigroup i.e.t G is a semigroup with 

a Hausdorff topology such that for each s G G the mappings s t as 

and s t sa from G to G are continuous. G is called right reversible 

if any two closed left ideals of G have nonvoid intersection. In this 

case, (G, ») is a directed system when the binary relation " on 

G 德 defined by t > s if and only if

{t}u Gt c{s}uGs,

for all t, s G G. Right reversible semitopological semigroups include 

all commutative semigroups and all semitopological semigroups which 

are right amenable as discrete semigroups ［고8丄 Left reversibility 

of G is defined similarly. G is called reversible if it is both left 

and right reversible.

Let C be a nonempty closed convex subset of a Banach space 

X with norm li ° II and let T be a mapping from C into itself. 

T i앙 said to be a Lipschitzian mapping if for each n) 1 there exists
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a real number kn>0 such that

IlTx—ryil <knllx"y||

for all x, y G C. A Lipschitzian mapping is said to be nonexpansive 

if Kn—1 for all n > 1 and asymptotically nonexpansive if lim K n
— n-*oo

=1, respectively [10丄

A family <={S(t): t GG} of mappings from C into itself is said 

to be a continuous representation of G on C if satisfies 한蛇 following ；

(1) S(ts)x= S(t)S(s)x for all t, s G G and x G C,

(2) For every x G C, 나le mapping (s, x) — S(s)x from GxC 

into C is continuous when GxC has the product topology,

A continuous representation C of G on C is satd to be a Lip^hkziaii 

semigroup on C 迁 each t G G, there exists K(>0 such that

II S(t)x — S(t)y If < KII x—y If

for all x, y G C.

The first nonlinear ergodic theorem for nonexpansive mappings 

was established by Bailion Cl] : Let C be a closed convex subset 

of a real Hilbert space H and T a nonexpansive mapping from C 

into itself. If the set F(T) of fixed points of T is nonempty, then 

for each x G C, the Cesaro mean

1 n~l
SnX=£ Z T% 

n k=o

converges weakly to some y G F(T). In this case, putting y=Px for 

each x C C, P is a nonexpansive retraction of C onto F(T) such 

that PT = TP = P and Px G conv {fxfZ 봐 for each x G C, 

where convA is the closure of the convex hull of A, And later extened 

to Banach spaces Bruck [6〕，Hirano [14丄 Reich [25], and others. 
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A corresponding result for nonexpansive semigroups on C was given 

.by Baillon [긴, Baillon—Brezis [3] and Reich [24]. Nonlinear ergodic 

theorems for general commutative semigroups of nonexpansive mappings 

were given by Brezis—Browder [4], Hirano ~ Takahashi [16] and Hi- 

rano-Kido一Takahashi [17].

In [26], Takahashi proved the following nonlinear ergodic theorem 

for a noncommutative semigroup of nonexpansive mappings: Let C 

be a nonempty closed convex subset of a real Hebert space H, 

and let S be 처!! amenable semigroup of nonexpansive mappings t 

from C into itself. Suppose the set F(S) of all common fixed points 

of t G- S is nonempty. Then there exists a nonexpansive retraction 

P of C onto _E(S) suclr that Pt — tP^P fcr all i G S and Px 

U conv {tx * t E： S}. Furthermore, Hirano—Takaha아li [15] extended 

this result to a Banach space. And, Lau — Takahashi [20] also proved 

the same result for a reversible sexnigruop of nonexpansive mappings 

in Banach spaces. Recently, Ishihara - Takahashi [19] proved the existe­

nce of the ergodic retraction for a reversible semigroup of Lipschitziam 

mappings in Hilbert spaces.

In this paper, we would like to extend the results of Ishihara - 

Takahashi to uniformly convex Banach spaces with a Frechet differen­

tiable norm. Our proofs employ the methods of Hirano - Takahashi 

[15] Ishihara - Takahashi [19丄 Miyadera - Kobayashi [22], Takahashi - 

Zhang [27] and Lau - Takahashi [20].

II. Preliminaries and Notations

Let X be a Banach space with the norm II - II and X*  its dual. 

Then, 난le value of x*  G X*  at x E X will be denoted by〈 x, 
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x* 〉・ With each x G X, we associate the set

J(x)키x*  G X* ： <x, x*>  = llxll2= II x*  112}.

Using 산ie Hahn-Banach theorem, it is immediately clear th카 J(x) = © 

for each x G X. The multivalued mapping J : X ^X*  is called 

the duality mapping of X. Let B={x G X： ]|xll= 나 stand for 

the unit sphere of X. Then the norm of X is said to be Gateaux 

differentiable (and X is said to be smooth) if

lim II x — ty II — II x II 
—0 ---- ---------

t

exists for each x and y in B. It is said to be Frechet differentiable 

if for each x in B, this limit is attained uniformly for y in B. 

It is well known that if X is smooth, then the duality mapping 

J is single-valued. And we also know that if the norm of X is 

Frechet differentiable, then J is norm to norm continuous, (see [5丄 

[9] for more details.)

For x and y in X, SgmEx, y] denotes the set

{ 入x+(l— 入)y ： 0〈 A. £가

In this paper, unless other specified, X will denote a uniformly 

convex Banach space with modulus of convexity 8. The modulus 

of convexity of X is the function 5 : EO, 21 오 [0. 11 defined 

by

8 (e)=inf{l.-즈尹 : II x II < 1, II y II < 1, II x—y II > s}

for 0(£ <2. X is uniformly convex if and only if 5(e)> 0 for 8> 0 

([7], [9] and [23]). It is known that 5 is nondecreasing ([13], [213 
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and [28]). Hence if X is uniformly convex and S (&) t 0, then £n 一송 0.

DI. Lemmas and Propositions

In this section, we prove serveral lemmas and propositi。효s which 

are crucial for our purpose in next section.

Lemma 1. Let C be a closed convex subset of 거 uniformiy 

convex Banach space X. Let G be a right reversible semitopological 

semigroup and C={S(t)：t G G} a Lipschitzian semigroup on C 

with ]imtsup kE <1. If f G F(0, 한}en there exists the limit of

il S(t)x— f II for all x G C.

Proof. Since, for all t G G,

II S(t)x~f II〈 II S(t)x~S(t)S(s)x 11 + II S(t)S(s)x~~f 1|

(II S(t)x—S(ts)x II +kt II S(s)x—f II

for each x G C and s G G. Taking the lim sup as t and fixed 

s, we obtain

lin^sup II S(t)x—f II < (hn^supkt) II S(s)xT II

< I! S(s)x~f 11

for all s G G. Taking the hminf a읍 s, we have

limsup II S(t)x—f II < liminf )| S(s)x—f II 
t 즈 t

This completes the proof

Proposition 2. Let X, C, G and C be as in Lemina 1. Then 
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f(Q is nonempty if and only if {S(t)x * t G G} is bounded for 

any x E C. Furthermore, F(0 is a 시。sed and convex subset of 

C.

Proof. Suppose that {S(t)x: t C G} is bounded for any x G

C. Since X is uniformly convex, there exists a unique asymptotic

center a with respect to C Cllj such that

limsup II S(t)x — a II (linkup II S(t)x~z II

for all z G C—{까. On the other hand, since for all s G G

II S(st)x~S(s)a II < Ks II S(t)x — a II,

takmg Innsup as s, we have

linkup II S(s)x—S(s)£z II < (limsup ks) I! S(t)x — a II 

g II S(t)x_a I!

Taking limsup as t, then we obtain

lin|sup II S(t)x~S(t)« II〈 linkup II S(t)x~a II

This implies that a G F(。. The converse follows from Lemma 1. 

The closedness of F(0 is obvious from the continuity of the elements 

of C To show convesity of F(0 it is sufficient to show that z=(x+y)/2 

eF(0 for all x, y E F©. Let x, y G F(0，z=(x+y)/2 and 

必 y. Then we have

lnnS(t)z = z

If not, there exists e〉0 such that for any t G G, there is t G 

G with t > t and
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II s(t)z — z H 2 &

Choose d ) 0 so small that

A p 
(R+d)El+8(^-)] <R, 

R-ra

where R= II x — y H〉0 and 8 is the modulus of convexity of X.

Since lin^supkt £ 1, it follows that there is to G G such that 

k il x—y II < II x~y II +d

for all t > to. Put u=[S(t</)z—x]/2, v^Ey—S(tof )z~x]/2 for 招 > t. 

Then we have,

I! u 卜늘H S(& )z~x it H言一y ii

<j(R+d),

H V』=割 y—S(t^ )z II yll
厶 一理

*：(R+d),

and

II U~ V II = S(to )z—z )1

2 &

Since X is uniformly convex,

卜브므II <*R+d) □-8(-島) ]

2 =4 R-rd

《R

and hence

=■” x~y II =*ll  u+v II〈§R

This is a contradiction. Hence we have
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Therefore, we have

S(s)z = l^nS(s)S(t)z

=啊 S(t)z

=lynS(t)z

=z.

This completes the proof.

The next lemma is known E121 It is a simple consequence of 

the definition of the modulus of convexity.

Lemma '3. Let X be a uniformly convex Banach space with 

modulus of convexity 8. If II x II <r，" y " r, r <R and II x-y II ^ £(> 

0), then

II Xx+(1-X)y II〈 Q8(듬)]

for 게 1 0 < 入 g L

the proofs of our following lemmas are based on methods used 

in [14] and [20].

Lemma 4. Let X, C, G and C be as in Lemma 1. Let X be 

in C, f G F(Q and 0〈 a <。〈 1. Then for any 0, there exists 

to G G such that

II S(t)[入S(s)x+(1 —人)f]—[人S(t)S(s)x+(l—人)f] II〈8

for all s, t to and p.

Proof. Let £〉0, c = mm{2人(1—人)：
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ana c = max{ 2K(1 一人)：a. By Lemma 1, lip II S(t)x—f II exi­

sts. Put r = lip II S(t)x~f JI for any f £ F©. Since G is right 

reversible and limsup r=i^f II S(t)x-f II. If r=0, then there 

exists to G G such that

II S(t)x - fll〈盘

for all t to, where M =瑯曾. Hence, for s, t>to and 0〈人〈 

L

II S(t)以S(s)x+(1—人)f]-[人S(t)S(s)x+(l一入)f] II

g시I S(t)[XS(s)x+(l-A.)f]-S(t)S(s)x] II

+ (1■-人)』S(t心S(s)x+(1—入汨一f II

< Xk II AS(s)x+(l-X)f-S(s)x II

+ (1—人)k II XS(s)x+(l-X)f-fll

=2K(1-X)k II S(s)x-fll

< Me II S(s)x—f II

<8.

Now, let r〉0. Since 8 is nondecreasing, for given e〉0, we can 

choose d) 0 so small that

(r+d)El-cS(^)]<r,

where 5 is the modulus of convexity of the norm. And also, since 

r = lip II S(s)x~f 11 and li罕upktgl, there exists to G G such that

k II S(s)x—f II〈 r+d

for all s, t > to. For some X with we put u = (1—X) LS(t)z—f]

v =江S(t)S(s)x— S(t)z] where z = AS(s)x+(1—X)f. Then, we have
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II u II < (1—A)k( II z—f II

= 人(1—사kt II S(s)x~f II

〈人(1 一入)(r+d)

g 孑(r+d),

II v II Akt II S(s)x~z II

=入，(〕L一入)kt II S(s)x~f II 

<y(r+d),

and

II u-v|| = II S(t)[人S(s)x+(1-入)f]一[人S(t)S(s)x+(l一人)f] II ・

Surwjse that II u~v II for some e) 0. then by Lemm휴 3

人(1 一。il s(t)s(s)x—f il = u 入니+(i一入)v il

< Ml - X)(r + d)Cl - 2X(1-A)8(-—)]
- l 心 r+d
< Ml—X)(r+d)[l—c8(翌)]
* r+d
^X(l~ X)r.

And hence,

II S(t)S(s)x—f II < r 

for s, t > to. This is a contradiction to 나le fact that r = inf II S 

(t)x~f H. This completes the proof.

The following lemma is a direct consequence of Lau-Takahashi 

[201.

Lemma 5・ Let C be a dosed convex subset of a uniformly 

convex Banach space X with a Frechet differentiable norm and {S(t)x : t 

U G} 죠 bounded net in C. Let z U C conv {S(t)x: t >= 바, 
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y E C and {Pt} a net of element m C with Pt G SgmCy, S(t)x」 

and 』R—z II = min{ II u-z II : u GSgmEy, S(t)x]} If {PJ converges 

strongly to y as t, then y=z.

By using Lemma 4 and Lemma 5, We can prove the following 

lemma

Lemma 6. Let X be a uniformly convex Banach space with 

a Frechet differentiable norm. Let C, G and。be as in Lemma 

1 and {S(t)x: t G G} a bounded net for some x G C. Then 

for any

z G C conv {S(t)x : t > s}nF(Q and y G F(Q? 
s GG

there exists to e G such that

<S(t)x~y, J(y~z)> £0

for all t to.

Proof. If y—z or x~y, then the result is obvious. So, let y7^z 

and x=y. For any t G G, taking a unique element Pt E Sgm 

Ey, S(t)x] such that

II Pt~z II =min{ II u~z II ： h C SgmEy, S(t)x]}.

Then, since y产w, {PJ doesn t converge to y from Lemma 5. Hence, 

we obtain c〉0 such that for any t G G, there is t G G with 

t t and

II R—y I! Re­

Setting Pr—cuS(t)x 4- (1—af)y, then there exists 功〉0 답。small 
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that (in fact, since xNy and y G F(Q,

C <H Pr-y II = li CuS(r)X + Q_%)y—y II 

gakr II x—y II .

Hence, put c ---------  where K=s바)虹 Letting K=lip II S(t)x—y

H, we have not, then we have lipS(t)x=y, and so lip

R=y which contradicts. Now, we can choose r〉0 with K〉r such 

that

烏〉f똖)，

可here o is -thenrnodulus of convexity of the norm and R= II z—y I!

(〉0)・ Fix &〈 e. Then by Lemma 4, there exists ti such that

II S(s)EcoS(t)x+(1—cjy] — C c S(s)S(t)x—(1—cjy] II < &(〈 e)

for all s( t ti. Fix t G G with f 泊& and II Pt—y II ) c 

Then, since 妃 c。(>0), we have

0 c S(t)x+(l-q)y II

C C
(l^)y +质[atS(t)x+(l—就)y]

G sgmCy, Pt]

C
Put A-~. Then we have 

at

II qS(t)x+(l-c)y II

=II 入y+(l—人)R—z II

£Xll y—z II +(1-人)|j R—z II

』시I y—z II +(1—X) I! y—z II

=R.
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Hence we obtain

!i C,S(응)S(t)x+(1—C°)y—z 11

< H S(s)[qS(t)x+(l-c)y] —MS(s)S(E)x+(l—c°)y] II

+ II S(s)LcS(r)x+(l-co)y]-z 11

<ks II coS(t)x+ (1 — cjy—z II +&

国R+q

for all s, t >= ti. Since lin|sup kt < 1, there exists t2 E G such 

that ksR+so < RH-s for all s >= t2. Furthermore, Since lini II S(t)x—y 

ll=K〉r, there exists & E G such that II S(t)x~y li〉r for all

t>t3i Now, let to GG with to> t, i=L 2, 3 and fix to. Then 

we have

II coS(s)S仕)x+(].—G))y—z II < kJR+eo

〈R+e

for all s 洪 to- On 나｝e other hand, since

II y~zll =R<R+e

and

|l [co S(s)S(t)x+(1—Co )y—zl — (y—z) II —co II S(s)S(t)x—y II

=co H S(st)x~y II

for all s 洪 to, by uniform convexity, we have

II 告 s(s)s 代)x+(i—：)y—z II

=*  il Leo S(s)S(tf)x+(1—Co )y+z] + (y—z) || 
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for all s N to.

Letting us =스龄双爲【+(1—응)y, since — II tu-z II〉一 II y—z II, 

厶 z

we have

II Us+a(y-Us)-z II = II (l-a)us)+ay-z II

—II (a—1) (z—us) + a(y—z) II

Z 시I y—z II — (a-1) II z—us II

[a II y—z II —(a—1) II y—z II

=II y—zll

for all a?L Hence, by Theorem 2.5 in [81 we have 

<us+a(y-us)-y, J(y~z)> ^0

for all(对1, and hence

<us-y, J(y~z)> £0

for all s to. Therefore

%〈S(s)S(t)x-y, J(y-z)〉

=〈스S(s)S(t°)x+(l-3 )y-y, J(y—z)>

go

and hence

<S(s)S(t)x-y, J(y-z)>《0

for all s to. Let t N 仁 Then, t G {하 u Gf. Since we may 

assume that t G Gt, there exists a net {gj GG with gat ―> t 

Therefore, we obtain
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<S(t)x—y, J(y—z)> gO

for all t巳 This completes the proof.

New, we prove the following proposition which play a crucial role 

in the proof of our main theorem in this paper.

Proposition 7. Let C be a closed convex subset of a uniformly 

convex Banach space X with a Frihet differentiable norm, G a right 

reversible semitopological semigroup and <={S(t) : t G G} a Lipschit­

zian semigroup on C with

lii平1町逐1

If {S(t)x * t G G} is bounded for any x C C, then the set 

conv {S(t)x t * s}n F©. consists of at most one point.

Proof Let y, z GQ, conv {S(t)x : t 泊 s}nF(O- Then, since (y+z) 

/2 E： F(0, it follows from Lemma 6 that there is to G G such 

that

〈S(tt，)x-豪 J(頒-z)〉gO

for every t G G. Since y e conv {S(tto)x：t G G} we have

〈尸頒J(頒一z)〉顼

and hence

〈y—z, J(y~z)>《0

This implies y=z.
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IV, Nonlinear Erogodic Theorem

Now, we can prove a nonlinear ergodic theorem for reversible 

semigroups of Lipschitzian mappings in uniformly convex Banach spaces 

with a Frechet differentiable norm.

Theorem 8. Let C be a 이osed convex subset of a uniformly 

convex Banach space X with a Frechet differentiable norm and let 

G be a right reversible semitopological semigroup. Let §={S(t)：t

£ G} be a Lipschitzian semigroup

(t)x : t 6 G} is bounded f成 any x G 

on C with linpup kt£l. K {S

C, theix the f세鬲酩 슪塚슨書由泰

are equivalent:

⑴ O conv {S(t)x : t > s} A F© 
sGG

is nonempty for each x GC,

(2) There exi아s a retraction (ergodic retraction) P of C onto 

F(0 such that PS(t) = S(t)P = P for all t £ G and Px G

conv {S(t)x' t G G} for every x G C.

Proof. (2)=f(l). Since S(t)Px=Px for all x € C and t G

G, Px G F(Q. And also, since G is right reversible, t》느 s implies 

the existence of a net {gj EG such that &s ~>t. Then we have

Px=PS(s)x G conv {S(t)S(s)x: t W G} 

= c6nv {S(t)x : t } s}

for all s G G. Hence we have

Px G n conv {S(t)x：t > s} n F(Q.
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(1) 느>(2). Let x G C. By Proposition 7,

QGconv {S(t)x ： t、、/느 s}n F(Q is a singleton. Hence, for each x 

e C, define a function P：C---->s£^conv {S(t)x：t >= s}cF《) =

{z} by Px = z. Then P is welldefined on C and it is a retraction 

of C onto F(0 and

Px G conv {S(t)x * t G G}

For all t G C, S(t)P = P is obvious. Furthermore, let s G G and 

to G G be fixed. Since if t * s, t G {s} u Gs. Then we have 

tto G {stolu Gsto and hence tto 曰 Sts Therefore, we obtain

{S(t)SCto)x ； t 그= 아 e{S(h)x：h > s아.

a효d also

{S(t)S(to)x ' t > s} G {S(h)x : h 2드; sto}.

On the other hand, if h 泊 sto» then h G {stofu Gsto. 

If hsto, then

S(h)x = S(s)S(to)x G {S(t)S(to)x : t * s}.

If h G Gsto, then there is a net {gj GG such that gaSto —h 

So S(h)—lim S(gaSto), hence 
a

S(h)x G {S(t)S(tQx : t >드 s}.

Therefore, we have

{S(h)x : h >= st』G{S(t)S(to)x : t > s}.

Consequently, we have conv {S(h)x : h >= s바 = conv{S(t)S(to)x : t 

s|.
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Hence, if z W n^conv {S(t)x : t > s}» then z G conv {S(h) 

x ： h > sto} = ^,conv {S(t)S(U)x : t 尤 s}.

Therefore, n^conv {S(t)x : t >= s} G^conv {S(t)S(t«)x : t >= s} for 

to G G be fixed. Hence, we have conv (S(t)S(to)x : t w s}n F 

© = ^coiiv {S(t)x : t > s}cF(C)・

Therefore, for to G G, we have

PS(to)x = Px

for each x G C. Hence PS(t) = P for all t E G. This completes 

the proof.
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