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Spaces of the type Q_ and the Laplace
transformation

Young Sik Park

0. Introduction

This article is devoted to the study of the Banach spaces of analytic
functions of the type @ and the type Q. dnal which are clesely
related to the Laplace transformation.

As first, we define spaces of the type @ and examine connection
between spaces of the type @ and Q. Especially, Laplace tranforms
and inverse Laplace transforms on the spaces of the type @ and
that of the type Q. are studied. In the case of convex compact
subsets K, K in R are ./-admissible pairs, we considered conditions
of existence of a spectral function, and related theorems.

1. The space Q_(T(K):K') and spaces of the type Q_.

With a view to constructing the Laplace transformation of analytic
functions, we now introduce test-function spaces consisting of functions
that are continuous in horizontal bands, holomorphic in the interior
of the horizontal bands and of exponentials.

We denote by Q (T(K): K" the Banach space consisting of all
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functions ¢ continuous in 7(K) and holomorphic in the interior T(K)
of T(K) for which

Ho Il oy, =suple™ | 0} | z=x+iy € TW}<oo ¢h))
where W (x)=infltn . n & K’}, and having the topology defined by

the morm !l - If ;.. (we recall yet once more that K and K’ are
convex compact subsets in R° with nonempty interior).

Since Q(TK); KYCQIW) L) if LCK K CL,
the natural embeddmg mapping
YK QTK) s K)~>Q (TW) 5 LY (1.2)

is defined (we emphasize that here K'CL’, and not K' DL‘, in
contrast to the space Q(T(K); K').

The mapping iKKLI, is compact for all L ©K, K' L.

The proof is the same as in the case of spaces of the type Q.
We shall also assume everywhere that KK'L and L' are convex

compact sets with nonempty interior and U’ are convex open sets

in K.

We denote by

QAT s UN=tim ind Q(T(L)3 L")
K LU 3L (13)
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The inductive lLimit of the Banach spaces @ (T(L): L’) is taken over
all convex, compact sets LK, L' €Ul

Since the mappings i ry, * QT F LY@ (0N s M) M &L,

L' €M) are compact, Z}Z(T(K) ;U7 is a space of the type (DES)
and its dual

Q,T® : Uy=tm proj QT L)
KcL U DL 14)

is a space of fype (¥S). Further, we denote by, for an open convex
set U and a convex compact set K’ of R° with nonempty interior,

Q. (TWy s KY=tm proy Q(TL)5 L)
L el L' DK as)

the projective limit of the Banach spaces Q (T(L): L")
The space 5{0 (TAH+K) is a space of the type (FS), and its
dual

Q1w Ky=tim ind Q(TL)3L)
L el L' DK (1L6)

is a space of the type (DFS).
We have defined the followings :
3. (T s Ky=tim ind QTGO+ K)
K kK 1.7)
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O (T : O)=lim proj QT : K7,
{0} €K (1.8)

Q,(TO); R)=lim ind QTR : K=&
o} ¢k Kok (1.9)

Q, ) ;5 O)=lim indllim proj Q (T(K) s K")]
K>i{o} {0} ckx {1.10)

We remark that the space 6:(&") is properly included in the space
-
Qw(R” ). The space Q (TW0);(0) is also
lim projltim ind Q (TUK); K)]
fo} €K K2 {0}

and hence Q(T(0) O)=lim ind Q_(T(K): (O)
K> {0}

=iim proj Q(I(0) KY).
{0} <K

The spaces @ (T(K): K') and the spaces obtained from them by
means of the inductive and projective limits will be called here spaces
of the type Q :the dual, of the type Q..

2. The comnection between spaces of the type @ and Q.

By definitions we have

Q) 3 -K) CQUTUD K and Holh <lol, . @1
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for ¢ € QT :-K). For in accordance with property g) of the
nega-support function [111 Wy, <Wy, whence Holl  <Holl, .

For the decreasing sequence of positive numbers ¢£>0(=0,1.2, eel)
such that }{g’gx e=0, g=¢, we have the followmg relations -

QUK : [eel” cQO® i [eelhC. . CQUIE:[eel)C... C
QUTE) : 0N CQ U O C... C
QT Lee ) C... CQUTE : [eel). 22)

Under the condition {0} ©K’, we have the followings :

Q(C”)cQ(T(K) R)cQ(T(K) K')CQ(T(K) (0))‘"@ (T(K) 5 (0))
CQUIE) ; K’)CQ(T(K) R)CQ(R") 2.3

Proposition 2.1. Then space 6;(0" ) 1s dense in @ (T(K): K") in
the topology of @ (T(L)+ LN if L €K L' DK

For first, as in the case of the space Q(T(K):K'), we can show
that Q(TWK)  R") is dense in Q (T() 5 K" in the topology of
Q(TW)s L) for L' DK {0} Further, as we have shown [11%
Proposition 4.4, 5:(0” ) is dense in Q(7(X) s K m the toplogy of
QT -L) CQ (T, L). Therefore, for every function
$eQ (1K) 3 K"} there exists a sequence {o,} CZZ(C") such that
I o0, 0l , =0 as k.

But then 1190, (<1001, )0 as k. 1e, QUC) is de-
nse in Q(T(K): R} in the topology of QT L)y as well
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Thus, ZQ_,(C“ ) is dense in Q(TK):R), and QITE) s F") is dense
in QW(T(K) + K’), whence the assertion.
We have the followings -

<~ - —> n
QC) CQ(TUWY U CQITE): R, (24)

g(c”) cQI®); () CLA®Y: (W) COTRY k) C
QI Ky, if {0} €K', and U DY} (2.5)

<= L ~—
The space Q(C’) is dense in Q(T(1); K" and in Q (TK); UM,
This follows directly from the previous assertion.

3. Construction of the Laplace transformation.

We now turn to construction of the Laplace transformation. It is
readily verified that ¢ & Q(TK) : K) for all z € T(K"), and
eIl X, <e"™ (z=x+iy). Moreover, differentiation of the
exponential ¢ with respect to the parameter z is continuous in
Q (T(X) ; K'). More precisely, suppose z& T(X') then

e:(zT'A;z)_ezz ? e
- — -
I iz 5 I xx, 0 & 6270,
1=12,...n, where A!z:((} ..... 0, Az,,O,....O) € C", and A:eJ is the

j-th component,

We denote by Q (T(K); K) the space dual to Q(T(K):K") and
define the Laplace tranform _’{g] of an analytic functional g
sQ;(T(K) i Ky by the equation
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Llgley=@ge"),

te, we define the Laplace transform of a functional by its values
on exponentials. By virtue of what we have said above, the function

f@)=_+<[glz) is defined and holomorphic in T(K") and satisfies the
estimate

@1 <Hgh Bl <lghe™

where z=x+4 and llgll is the norm of the functional g.

Theorem 3.1. Suppose that LKL &K' are convex compact sets
in R" with nonempty interior and that K @I, L’ €K'. Then the
Laplace transformation ./’ is a continuous linear mapping of
QITE) s Ky>Q (T L)

and | £Lgd i, = Ifll,, <ligl.

This permits us to transfer the Laplace transformation .2 to the
projective and inductive limits of the spaces Q! (T(K): K").

Theorem 3.2. The Laplace transformation that associates every

analytic functional g ea)’w(T(K) s U) with the function flz)=(ge ),

z €T(U), defines a continuous linear mapping

£ QUTE)  U-QTW) K) .
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4. Inversion of the Laplace transformation on the spaces

Q&) ; K).

Definition 4.1. Suppose f &€ Q (T(K): K). We shall call every
analytic functional g € @ (T(L): L'), where L DK, L' @K', such that
(g;eu)‘:f(z) for all z € T(L") a spectral function for f.

Before we consider the existence and uniqueness of such a spectral
function, we give a number of ancillary definitions.

Let J(-iD) be the non-local differential operator then

JED) =5, a (D' @' =]@e”, e,

J¢iD)Y"=J@z)¢". Further, suppose fz)=¢” where a €R" then emDQ(C}
=°§o (z'a)°¢(n) ©/a! =6 tia), wher ¢ is a function which is holomor-
phic in a sufficiently large tube region.

Definition 4.2, Let K be a convex compact subset of R* with
nonempty interior. We denote by A(K) the Banach space of all conti-
nuous functions ¢) for which

ol =suple™ 1 6@ | ¢ € K<,

with the topology defined by the norm If - 1l .

Definition 4.3. We shall say that the pair KK’ is .#-admissible
if for any L DK L' €K' there exists an entire function f(z) such
that
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A. JD) 2 @ (T 5 L)~>ALY) is continuous, linear,
B. There exist Kj > X and K::DDK' such that
@) CRUITKEK)  K).

Proposition 4.4. Suppose J@)=F exp(-az), acKv=12,...,1),

then J(4D) is non—local and
JED) © Q(T(KY 5 Ky~>AK")
is a continucus linear differential operator.

Proof. Suppose ¢Q,(T(K) K, then J(iD)o@= £, " o(®=
vgl ¢€+ia) and therefore

1

WD, =supld™® 1 &_ otia)l 1t e B

Snesup OO 1 € TEO) =altsl.,

We now give a sufficient condition for a pair £ X to be .7

-admissible.

.. - T 75 -
Proposition 1 5. Ler X be 2 copvex compact evbsss of R with

nonempty intertor. Suppose there axists o oomtive nuwnber § and

” a - .
K’ convex commact subset of R with nonsmgty interior such that

-2

(KoK <

lotn
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then K, K* is an _/-admissible, where K- K'={xt .z ¢ K, & ¢ K}
and K K |<p if and only if |lx-&|<p for all x ¢ K, K.

Proof. Suppose we are given a pair L DK, L° €K', Since K is

convex compact, there exist points a,....a, & L\X such that the
polyhedron
K= chia...... a,l satisfies these conditions ;
1) L3K,2K:

2) There exist positive number & and K; DK such that
| KK | 5'3 =
We set J(z)=\g‘.l ¢, Then, by Proposition 4.4,

JED) 1 Q (TW) s Ly>A(L") is continuous, linear, and hence condi-
tion A is satisfied. Suppose z ¢ T} then

a

N N . N
J@ | =12 &7 12Re £ e€™'=Z ™ s ay

> L e™smd >0,
where z=x+1y. Therefore

K, K=sup te 7" 1421 e=e=styy STW))

e-WKI(f‘,‘ i

< su, ; < < -
- xePR” sind' I e “sind'
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. Wyad N . "
since ¢ gvgl ¢™ for all x &R".

5. A spectral function in the case of .7 -admissible pairs.

Proposition 5.1. Let KK’ be an .~ -admissible pair, f €Q (T(K") ; K),

J is an entifre function with the properties A and B of the definition
of _/-admissibility and define

_f(z)
then j} € QUIEY: z} for sufficiently small £>0.

Proof. By properfy B, there exist K DK K' D K' such that
175 € QIEK): K), and since flz) &€ Q (T&Kys K).

'7?7 <C e af* for some constant C>0, z € T(K), and

W)
| fiz) | <Me for some constant M>0, z € TK").

Ihe= st B ety e TR0)

WG W)+ W ) "
<CM suple U Ty ‘x € R}

By property e) of the nega-support function[11], for every K €K,

there exists 8(K)>0 such that WKl(x)-WK(x)S-S | x 1. Hence

W W)+ W, < W05 | x |
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Lelxl-8lzl=Edlx!.

Therefore, if e<8 then |l ,GN g, is finite.

Proposition 5.2. Let XK' be an _# admissible pair, f €8 (T(K"} * K),
L>2>K L'cCK' then there exists a spectral function g €
Q. (T(L) s L’) such that

a) fl=(ge") for every z in T,
by lgl<Clfll,, .

where the constant C does not depend on f.

We set g(&=% (f1© where f, is the function defined in

Proposition 5.1, and then g® € QU ) M"), where O<e'<e,
L' €M cX, and f@=F(gle) and ligl ., <Clfll .5 for
some constant C>0.

In particular, the function g, defines a regular functional on A(L')
that acts in accordance with the formula

&®)=[z(90®)d¢ and
g £)=Fgl=f), for every z & TU,

and i g I A'u,§C' il g; i . “SC” i f," g Where C' and C” are some

constants.
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We define the functional g & @ (T(L); L) by the equation
&O)=(, . JCiD)p), for every ¢€Q (T(L): L"),
By property A of the function J, this definition is correct.

We verify that g has the required properties a) and b). Suppose
z € T, then

@)= fg QDY 1d"E= faOf@)d"E

=12 ) =T D=1,

and a) is proved.
Further, by virtue of the estimates obtained above, for any

6 € QI L),

@) | <llg ll A @) 1Dy I AL
<clish oy N7yl ol 1y, » for some constant

C>0, where | J(=D)ll is the norm of the operator J(-iD).
However,

N NI ,
L i g, = Suple !j_(z.')-l Lz=xtiy € TED

< { zix! I i j 1, Wy fx}
up 12 eWgt T .. . €
ﬂ-EER)? / Kk, €K ]“ B K

1
oI5

AR R+ Wy )g'x)

J t

suple
1eRY

= |
[!_f” K tK},[\;!
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- 1
=11, 1

Since ¢z | -WK(x)“i-WKJ(x)SO for sufficiently small «.
Therefore

| @ | <Cliril KK fol L, » Where the constant C does not depend
on f or &, so that property b) also holds.

To study the unigueness of the spectral functior,, we require ancillary
assertions about integration under the symbol of an analytic functional.

Proposition 5.3. Suppose g € (TKy; K'). F is a compact set
in R, y €' L' €K, vy € # (TK") then

fr @)Y v Q2= Q) f, & y@dx), @=1+iy).

Proof. Suppose v%: , [™w(z))] mes F (2, =x,+iy) is an integral sum
for the integral [, ¢"y()d'x, where {F v=12,...,N} is a partitioning
of F with mesh 8(e, 8=sup{d(F):v=12,...,N}, where d(F) is
diameter of F), mes F, is the Lebesgue measure of F. Consider
the difference

A(O:ﬁ:&J Le™ w(z)] mes F—{. e'zgq;(z)d"x
£ 5 [ v vl

v=

By means of the first mean value theorem, we obtained
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[ & S‘il f ¢t \;,v(z‘)-euvc wz) | mes F (z/=x +iy)

g

<mesF sup|| & w(z’)—eu‘ y(z) | [z =xttiy, 2r=xttiy

| x| <8, %', 2 ¢ F}

Fixing a sufficiently small >0 and using the integral Cauchy formula,
we obtain

f A <mes F-;Z;-sup {l.e"c v@)| Tz € F+il'}8, for every
Eé— (we recall that F, and I ave real r-nesghborhowd of the sefs
F and L*). Therefore

o)

WE{(S)

LAl el

Fally, =sup fe

Wt
Ssup le "

2 (229
= )
sup. mes F = sup le” ] suplwy@) |}

zgF +il!  zcF il

WK'(Q-WL'r(QJ

<[mas F»‘?- sup {w(@) | supe'wl‘w sup ¢ 5

T zeF, 41l xcF, EcR”

=(9%, for every :SS%,

since WK,(E,}—WL;(E)SO for sufficiently small 1.

Thus || A xx, >0 0 the limit 0. This means that the integral
sums converge to the integral in topology of @ (T(K) > K') and there-
fore, one can integrate under the functional sign, from which the

required equation then follows.
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Theorem 5.4. Suppose g eQTEK) K), ye€QT(K): L), L DK,
z=x+iy € T(K’) then

feeHw@dx=(g, FTyl).
For suppose R>0, we set
2, Q0=F Q- [ ¢% vd's= [ ¢% v@d'x.

Then we can show that A (Q) € Q(TX):KY and |l &yl —0
as R—co.

This means that f Je:"; w@d 2= F Ly in the topology of
Q(NK); K') as R—co, so that

lim @O, [ ved'D=EFTyD.
By the Proposition 5.3, rE | SR(g,e“)w(z)d"x=(g(O, g 1321: wiD)d %),
we obtain the required equation.
Theorem 5.5. Suppose ge@' (T(K): K’) and (ge )=0 for all z&T({y})
=R"+iy for some yeK'. Then g=0 on é:(C" ) and hence g=0 on

any space @ (T(L); L") with LDK L' CK"

Proof. For any function weﬁ(c” ), z=xtiy, (g Flyl= j(g,eu)d"x=
# by Theorem 54. Since & (TQ_S(C‘"))=E)*s €Y, 2=0 on TO_;(C” ). Be-
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cause E):(C") 1s dense in @ (T{L): L) in the topology of @ (T(K) : K"}
if LK I’ CK, g=0 on QW(T(L);L').

By the above Theorem 55 and the Hahn-Banach theorem the linear
hull of the set {¢* 7 :xcR" } for fixed y ©L' is dense in QT+ LY
in the topology of @ (I'K); K" for all L DK, L' C€K'.

Theorem 5.6. Let g, g” &« Q (T(L): L") be two spectral functions
for feQ (T(K'): K), where L DK, L' €K' then g'=g” on any space
Q(T(M) s M)y with M DL, M’ cL'.

To prove this, it suofficient to set g=g'-g’ and use Theorem 5.5.
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