ON GENERALIZED NEAR-FIELDS

S. K. Lee and C. V. L. N. Murty

Throughout this paper \(N \) stands for a right near-ring. For the basic terminologies and notations, we refer to Pilz [7]. In Murty [6] a near-ring \(N \) is called a generalized near-field (GNF) if for each \(a \) in \(N \) there exists a unique \(b \) in \(N \) such that \(a=aba \) and \(b=bab \), that is, \((N, \cdot) \) is an inverse semigroup. See Howie [1], for properties of inverse semigroups. Recall that a near-ring \(N \) is called subcommutative if \(aN=Na \) for all \(a \) in \(N \) and a near-ring \(N \) is called regular (strongly regular) if for each \(a \) in \(N \) there exists \(b \) in \(N \) such that \(a=aba \) \((a=baa) \). In Lee [3], Jat and Choudhary [2], a near-ring \(N \) is called left bipotent if \(Na=Na^2 \) for all \(a \) in \(N \), and \(N \) is called an S-near-ring if \(a \) in \(Na \) for all \(a \) in \(N \). In Ligh and Utumi [4], \(N \) is said to have the condition \(C_1 \) \((C_2) \) if \(Na=aNa(aN=Na) \) for all \(a \) in \(N \). \(N \) has IFP if \(ab=0 \) implies \(bxa=0 \) for all \(x \) in \(N \) and \(a, b \) in \(N \) [7].

The aim of this paper is to show a characterization of a GNF, that is, \(N \) is an (left bipotent) S-near-ring with the condition \(C_1 \) if and only if it is a generalized near-field.

We need the following lemmas due to Mason [5] and Murty [6].

Lemma 1. If a zero-symmetric near-ring \(N \) has no non-zero nilpotent elements, then \(N \) has IFP.
Lemma 2. If a near-ring N is a GNF, then it is zero-symmetric and has no non-zero nilpotent elements.

Theorems 3. Suppose N is a strongly regular near-ring. Then N has the condition C_2.

Proof. Let a be in N. Then $a=axa$ for some $x \in N$ by Theorem 3 of Reddy and Murty [8]. Hence for a and $b \in N$, $ab=axab=axab-bxa \subseteq aNa$ by Corollary 11 of Reddy and Murty [8]. Therefore $aN = aNa$.

Lemma 4. If a near-ring N has the IFP, then for any $a, n \in N$ and any idempotent $e \in N$, $ane = aeae$.

The proof of this lemma is easy and hence omitted.

Corollary 5. If a regular near-ring N has the IFP, then it has the condition C_2.

Proof. Let a be in N. Since N is regular, there exists $x \in N$ such that $a=axa$. Since xa is an idempotent, $xa=xax=axa=axa=axa$ by Lemma 4. So $a=axa-axa \subseteq N^2$. Thus N is strongly regular and hence, by Theorem 3, N has the condition C_2.

Theorem 6. Let a zero symmetric near-ring N have no non-zero nilpotent elements. Then N is regular if and only if it has the condition C_2.

Proof. If N is regular, by Lemma 1 and Corollary 5, N has the condition C_2.

For the converse, assume that N has the condition C_2. Then, for any $a \in N$, there exists $x \in N$ such that $a=axa$. Thus we have $(a-ax)a=0$. By Lemma 1, $a(a-ax)=0$ and $ax(a-ax)=0$. Hence we have $(a-ax)^2$.
= 0. Since \(N \) has no non-zero nilpotent elements, \(a = ax \). Since \(N \) has the condition \(C_0 \), we have \(a = ax = aya \) for some \(y \in N \). Hence \(N \) is regular.

Theorem 7. (Murty [6]). The following are equivalent:

1. \(N \) is a GNF.
2. \(N \) is regular and each idempotent is central.
3. \(N \) is regular and subcommutative.

Theorem 8 (Lee [3]). \(N \) is a left bipotent S-near-ring if and only if it is strongly regular.

Now we prove our main theorem.

Theorem 9. The following are equivalent.

1. \(N \) is a GNF.
2. \(N \) is regular and subcommutative.
3. \(N \) is an S-near-ring with the condition \(C_i \).
4. \(N \) is a left bipotent S-near-ring with the condition \(C_i \).

Proof. (1) \(\rightarrow \) (2) Follows by theorem 7.

(2) \(\rightarrow \) (3). Let \(xa \in Na \) and \(a = aya \) for some \(y \in N \). Since \(N \) is subcommutative, \(xa = ax \) for some \(x \in N \). Therefore by Theorem 7, \(xa = ax = aya = aya \in aNa \). Hence \(N \) has the condition \(C_i \). So that \(N \) is an S-near-ring.

(3) \(\rightarrow \) (4). Let \(a \) be in \(N \) with \(a^2 = 0 \). Since \(N \) is an S-near-ring with \(C_i \), there exists \(x \in N \) such that \(a = axa \). Since \(xa \in Na = aNa \), \(xa = aya \) for some \(y \in N \). So \(a = axa = a(aya) = aya = 0 \). Thus \(N \) has no non-zero nilpotent element. Hence by Proposition 9.43 of Pilz
for each idempotent \(e \in N \) and \(n \in N \), \(en = ene \). Therefore \(N \) is strongly regular by Theorem 12 of Reddy and Murty [8]. Thus by Theorem 8, \(N \) is a left bipotent \(S \)-near-ring.

(4)\(\rightarrow \)(1) From Theorem 8, \(N \) is strongly regular. From the hypothesis and Theorem 3, \(N \) is subcommutative. \(N \) is regular by Theorem 3 of Reddy and Murty [8]. Hence \(N \) is GNF by Theorem 7.

Remarks. The condition that \(N \) is a \(S \)-near-ring is essential in Theorem 9. As an example consider the following:

Example 10 (See Pilz [7], p. 340 (E), (0,7,0,7). Let \((N, +) \) (where \(N = \{0, a, b, c\} \)) be the klein four group. Define multiplication as follows:

\[
\begin{array}{cccc}
\cdot & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & 0 & a \\
b & 0 & 0 & 0 & 0 \\
c & 0 & a & 0 & a \\
\end{array}
\]

Then \((N, +, \cdot) \) is a near-ring which satisfies the conditions \(C_1 \) and \(C_2 \). But \(N \) is not an \(S \)-near-ring and hence \(N \) is not a GNF.

References

ON GENERALIZED NEAR-FIELDS

Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea

Department of Mathematics
A. P. Residential Degree College
V. P. South, Nagrajunasagar-522 439, A. P.
India