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Approximate Controllability for the Semilinear
Control System with Delay

JWRyy, JYPark and Y.CKwun

1. Introduction

We consider a delay control system with uniformly bounded nonlinear
term F

™) LSO+ v = Fitx,) + Buy (150

Here Bu(t) corresponds to a finite dimensional control and F is a
uniformly bounded nonlinear term, that is, there exists an M>0 such
that [ Fitx) | <M for each #>0, x belonging to some Banach space
contained in X.

For (N), we introduce a linear control system (L) :

@ LUty =Bu) (150

In this paper, we discuss whether by choosing an #, we can steer
initial state ¢ to any neighborhood of a given state HT)=zx at a
given time 7. This is called an approximate controlability problem,

for nonlinear evolution system, many authors study this problem (2],

[51,061,08D).
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The purpose of this paper is to prove the equivalence of approximate
controllability for the above nonlinear system (N) and one for the
linear system (L).

2. Approximate Controllability

We consider the following delay semilinear control system ;

W BOy pxty = Fts) + Bu) 150
L 2(0)=¢(8) — h<6<0. x(0)=gq,
Let X is a Banach space over R with norm || * ||, and -A generates
an analytic semigroup lU(t)}lzo. Moreover F is a nonlinear term satisfy-
ing (4) and (5) stated below #, has pointwise definition
u0)=u(t+8), for -h<0<0.
Throughout this paper, we consider the case where @)=0 8¢&l-
h,0). The function ¢ is Holder continuous from [—#0] to X_. For
sufficiently Jarge y>0 and each «>0, we can define fractional power
of A=Aty and the Banach space

@ X=9 @A)

with the norm
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® el =0Axi

{eg. Tanabe [7]). Henceforth we fix a sufficiently large y>0.

For some 0<a<l, let us assume that F is defined on [O,oo)XXul
and satisfies (4) and (5):
(4) F is uniformly bounded on fO,oo)XXa, that is, there exists a

positive constant M such that Wl Fitx)ll SM for each 120 x €
X

(5) F is locally Holder continuous in # and locally Lipschitz continuous
in x. That is for each >0, there exists a constants L=L{)>0
and 6=96()<0 such that

I Ftx)— P )t SLe | ts P+ Nlx—2 1)
for each 0<s ¢<r and Izl <

The function # in L:“ ((0,00) s R") and B is a linear operator expre-
ssed by

6) B:R" - X
W
lU N

(’ﬂl,“'ﬁl,\,) > 5 T]kak

for a, CX (1<k<N). Here we regard B as a control term, and from

the practical point view, we assume that the range of B is finite
dimensional,

NOTATION. For T>0, we set
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H0T): K)={B: [0T1=R": | B®~B(s) | <¢,{ts 1’
¢t s€l0T]) for some ¢, >0 and 08>0}

That is, H(0,T1: R") is the totality of R"-valued Holder continuous
functions on [O,T]. Here for n=m,en,) cR', we set |yl =

IR

Under the assumption (4) and (5), if ¢, €X, and » cH(L0T] s RY)
for each T>0, then there exists a unique strong solution x{ * s pptt)
w (1} {eg [3] Theerem 2333 and Corollary 335).

We can state an approximate controllability problem, for example,
as follows.

Detemine ¢, €X, 1<k<N such that for given T>0, @ X, x, €X
and €>0, there exists an w € H({0T] 4 ) satisfying

(T3 @, w—x 1 <e

For our nonlinear control system (1), we consider a linear controt
system

Q) %’;—@+ Ax(t) = Bu(t) >0
0)=x,

For an »€H(I0T): k"), we denote a unique {strong) sclution to
(D by x(- Sx,w).
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We define reachable sets for the semilinear system (1) and linear
system (7}

Definition 2.1. For T>0, ¢ €X, 1, &X, we set
©® Riog=UT: g 03 (T g 0=UDg,t | UT=9Butsds
+ f : UT-sF(sx)ds, « HT0T] s R
and
9) L= T, 0 KTz, H=UTK,
+ J' : U(T-)Bu(s)ds, » €HI0,T]:; R}

Henceforth we denote the closure of Y CX by Y and the norm
of a bounded linear operator by i - .

For the approximate controliabtlity problem, we have only to disscuss
whether the reachable set R (g) is dense in X if and only if a
reachable set for (7) with the same B, is dense in X.

Lemma 2.1.([1]) If -A generates an analytic semigroup, then for
the linear system (7), the following (a)-(d) are equivalent

@ T, Z0=X
(b) Ubo L x)=X for each x,&€X
© £ x)=X for each x, €X and each (>0

(@ L£0)=X for each £>0.
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Lemma 2.2((8]) Let tab>0 and 0<a<1. If a continuous func-
tion f:[0]J>[0,00) satisfies

f<a+b [ (n)"fouddn, 0Ss<t,
then
fs)<ca * exp(cbll(ms). 0<s<t,
where ¢ is a positive constant depending only on «.
Lemma 2.3. Let 9, €x,=2 ((a+y)) and u €HIO,T]) 5 R") be given
and let >0 and p>1 be fixed such that 1<p/p-U<l/a. If vEH
(C07); R") satisfies |l u-vll o g 57, then

iz (s 3 gaayx(s5 o) | <e Mtuvll o). gy OSs<t

where a positive constant c,=c (!l |l oy b 8 is bounded as
nt and lall pe ) v are all bounded.

Proof First, for v &L'([04]: R satifying #u-v il on: g <
we will estimate l[x(ss @)l , 0<s<t To this end, we note
Ul <c, explwt), <0,

for some constants ¢ >0 and w>0, and
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(10) IA Us) | Zcs™, 05s<4
(eg. £70). By

+8
Q) x50 gu®)=Ut+0), + f DB
i+
Ty, UETEwFnx)dn
for each £<s5<¢, we have
HA 2 s 5 @)
= Us+8)4, g,
s+8 z s+8 a
+ 7 AT vs+omBotaant [T AL UG+0mF, 2 )dn
0 4
s+o -
Z¢, explwlstonll g il  +e M J' , btowdn
£+9 -
+e, max, ha,l J' . (s+8-n)" { v(n) | dn
Ze, expluls+o) gl *e M,/ ()
s+8 - .l s+8 1
+o, ax, Ul f G2 B a7 j Lo

b-1 }(M)/p

Ze, explwill g, +e, max fall { 5 pa

2 1gkeN

X 0l gy a T EMI0-0)/(-0)



84 J.W.Ryu, J.Y.Park and Y.C.Kwun

iit
~

In the last inequality, we use p/Ap-1)<l/u and

el

Ao s 1Y
SHoult gy, ot el ooy o

S?"*' " U u LP([U.‘I 3RN)

Hence we get llx(s gl ,lx(ss gl <c, 05s<t, so that by

o— "3

(5) there exists a constant ¢, >0 depend ¢, such that
| Fisx (s 3 guu))—Fls 5 2(x 5 guo) I
Selxls s @) —x(s s 0O, 0<s<t

Now, since x(s; ¢, #) and x(s3 @) are expressed similarly to
(11}, we obtain

Iz (s 3 @pud@)~x(s 3 @u0)(B) 1l .
s+ e
<U [ 4 s+ 8B vmn

st
[ AU+ 0nE £ 1 g0~ (Rlg £ (05 godn |
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s+8
< = ’
<e, may ol | Gro—n" Lutiyom | dn
s+¢@
tor [ 60" a0 0@ 5,05 0@, dn
< Ha ([ o—nf ™ Pan 1™l ae
=6 1?2{3{ % { o +8—n m 0N pos s R
s+é <
+ee, j' 80" x5 @)@ 2.5 @ Il dn
o
=6 I e i 7043 s RN
s+8 «
+e, | 0 I 15 IO 50 ¢ gp0X0) I
Applying Lemma 22, we reach
iz fs 5 @ua®)—z(s 5 g)@ I
10
<eg, exp(ce.,c;> il wew | P0s) R
Which is the conclusion of Lemma 2.3.
Theorem 2.1. Let 7>0 be given. Then
Usater Rz(%) =X= Ut:.o’{t(o) =X
Proof. First we note

(12) HU® i <c, explwt), t>0

85
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for some constants ¢,>0 and w>0, because {U(t)}
Assume that

10 18 @ ¢;-semigroup.

(13) L=0,,,Z0) GX

we will derive a contradiction. Since L is a closed linear subspace,
there exists an x €X such fixll =1 and

. . i
inffll x«ll 5% GL}>-2~

(e.gl4], pi31). Hence, for any #(+0) ER, we have

1 1
(14) inf{ { e« i sx&L}> ‘2“
Let @, €X, and let
T

(15) l 7| >dcexpwl)+4cM fo exp(ws)ds
Then x, euMdR,(%). In fact, by {4) and (12), we have

¢
(16) I [ vesRexs|

¢

< [ hues irexas

t
=¢ f exp(ws)ds
0
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¢ 4
x(t 3 pu)=Ulg,+ J . U(t-s)Bu(s)ds + J . Ut-5)F(s,x )ds
and
4
[ vesButis € L=, T 0
for each u €H((0T): R, we get for 0<I<T,
0t 5 ggre)-mx,
! i
20 UesBuds | =1 U, | = I [ DEaFsxas
>inf{ lxrx | *x GL}—c7exp(w,t) I @, i
—~ j T
cM . exp(ws)ds
1 A . T
>§{~;57 exp) L g, I - J , exp(ws)ds}
1
—c, M j exp(ws)ds
Q
=2c.expD) | o Il +eM f ‘ exp(ws)ds >0
0
This proves rx, & UpeerR(py)» which completes the proof.
Theorem 2.2. Let T»>0 be give. Then

Upno 0 = X SR (gp=X

1>0

87
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Proof. Let ¢, €X,. Then, for given T>0, >0 and x, €X, we have
to prove that there exists an u=u_ eH{0T1+ R satistying

an (T35 gu)—x i <e

Since Z(A)=X, we may assume that x, EZ(4), without loss of genera-
lity. Now we set

(18) B(E)=w log(1+5er)

Since we consider only a small £>0, we may further assume that

&e)<T.
We denote the value of (t5 @ 0) at the time T-8(e) by x5

2, =x(T3(e) 7 )

Here we note that x(t 5 ¢,0) (0<t<T—58()) is the solution to (1)
with #=0.

By Lemma 21 and UM./(O) =X, we have ./(x) X for each
x, €X, so that by regarding T-8(e) as an initial state z,, there exists
an 1 €HIT-5(),T] + R") such that the solution ¥(®) to

B0 . gyy=Bu®, THE<t<T

with y(T-8(c))=x,, satisfies
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Io(y—2, 1 S5
Since
SO=UCT+o@NR+ [ Us)Bu s
T-8()
t2T-8(c). We have
an  IUeeR,+ [ ., UT9Bu6Ms 5,1 <&
Now we set

20) 7 ()= { 0, 0<s<T-5(e)
u l(s}, T-8(ey<s<T.

We have to take a control function z within the class of Holder
continuous functions, so that we approximate # by # € H(0,7]: ™).
To this end, we fix p>1 such that 1<p/Ap-)<1l/a. Since C: (Lo,
T];RN) is dense in LP(I:O,T] ZRN), also H((0,T] :RN) is dense in
L'C0T1s RY). Hence ther exists an % €H({0,T]3 R") such that

@D Noli oy, gy

S%min {c: exp(-8(w)w)T" " ( Jax et Y, c'; c;l exp(-8{e)w)}.

For the #, we can obtain (17) in the following manner. Applying
Lemma 2.3 for t=7-5(¢) and noting that
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% 7 #(T-8(e) 3 @) =x(T-8(e) 3 gyt ) = (T-8(e) 5 p10),

we get

I & #7565 go) | Sec, exp(-B()w)/6
by (21), and so, by (12)
(22) I Ustens ,-USEN(T-6(2) 5 gpe)

<c, exp(d(e)o) i 2 2(T-8(e) 3 pyae) i

<
Moreover, by (10),(21) and Holder's inequality, we have

:

T
@3 | j U(T-5)Bu.(s)ds- f U(T-5)Bus)ds |
T7-5) 1 T-8(c)

T
< j s ¢,exp(e(T-5)) max lha, il |a(s)uis) | ds

From (19),(22) and (23), we get
7
| US(e)(T-8() 5 g0+ j ﬂa()U(T—s)Bu(s)ds-xI i 5;—

Furthermore, by (4),(10) and (19), we have
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.
@ o, UT9FG3)is

T
<M j I UTs) |l ds
T-8(e)

5(=)

ScM J

=£
, exp(ws)ds 5

By

T
KT 5 )= UGEMTS0) i 0 w0+ [ UT-9Butss

,
+ J( U(T-5)F(sx;)ds
T-3(e)
the estimates (24) and (25) imply (7).
Since w is Holder continuous on [0T], the proof is complete.
Theorem 2.3. Let 7>0 be given, and let us assume
26) U@ I Lcexpl-ct), >0
for some constants ¢ >0 and t>0. Then

Uy, oo =X = U, Z0)=X

Proof. Contrarily assuming (13), we can derive a contradiction in
a manner similar to Theorem 2.1. There exists an 7x, €X satisfying
(12). For any ¢, € X let us put
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@7) |1 >de, MFe.
Then by (26), we have
(28) I j; Ute-s)F(s.x)ds |
<M [ 1) as
0
<cM/x
u €H{00: K"). For any >0 and any u €H({{0£1: R"), we get
G 3 ggae)rx, 1
t
21 [ UeBusIsr, | = 1 Ug, I
t
+ |t f Ut-s)F(s,% )ds i
Q
22¢, [l g, ! +2cM/rc M/rc Ml g
=, g, | +e M0

This implies ’xoéUboR:(%)' which contradicts Ut>oR:(%):X' Thus

the proof is complet.
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