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PROPERTIES OF A FAMILY OF WEAKLY
PSEUDOCONVEX MANIFOLDS

Kwang Ho Shon and Hong Rae Cho

0. Introduction

The research on a domain of holomorphy is very exciting because
this concept is one of the great differences between the theory of
functions of one complex variable and that of several complex variables.
There are many equivalent conditions to the domam of holemorphy
{234,5]. Levi’s conjecture, saying that a pseudoconvex domain in
C" is a domain of holomorphy, was an important unsolved problem
for a long time in the theory of functions of several variables but
it is solved by K. Oka[9], H J. Bremermann[1] and F. Norguet[8],
etc. Thus pseudoconvexity 1s a very important concept in the theory
of functions of several complex variables. Now the reserch on pseudo-
convexity over complex manifolds is actively 1nprocess. It has developed
that a strongly pseudoconvex manifold is a Stein maifold[2]. But
the research on a weakly pseudoconvex manifold is advanced recently.
Since every strongly pseudoconvex manifold 15 weakly pseudoconvex,
there is the same phenomenon on a weakly pseudoconvex manifold
as on a strongly pseudoconvex manifold. But every weakly pseudoconvex
manifold is not always strongly pseudoconvex so that there are quietly
different phenomena. The aim of this research is clarifying these
phenomena.
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In Section 1, we show the difference between the one-variable
and several-variable theory of holomorphic functions. ]

In Section 2, we introduce pseudoconvexity of domains and example
which is not a strongly pseudoconvex domain but a pseudoconvex
domain.

In Section 3, we delve mnto a complex n-torus and a complex
holomorphic line bundie over a complex n-torus which are important
tools for the research on a weakly pseudoconvex manifold.

1. Preliminaries

An open cormected set in the space C" of n complex vanables
is called a domain. A domain  in € is said to have a ¢ boundary
(i21) if there is a C’ function & : C'—R such that Q={z € P(z)<0}
and

,‘gji)#)
Rn

grad (D(z)=(§§,---

on the boundary bf) of Q. Such a function @ is called a defining
function for Q. Let H(QY) be the set of all holomorphic functions
on 0.

Definition 1.1. An open set  is called a domain of holomorphy
if there are no open sets £}, and . in C" with the following proper-
ties -

1. ¢£00 C N

2. ), is connected and not contained in £

3. For every fEH(Q}) there is a function f EH(Q, (necessarily
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uniquely determined) such that f=f, on Q.

Let e €C". Consider the set of pairs (Uj), where U is an open
set in €, e €U and f is holomorphic on U. Two such pairs (Up
and (V,g) are said to be equivalent if there exists a neighborhood
W of a, WCVNU such that f| W=g| W. Let £ be an equivalence
class with respect to this relation and will be called a germ of
holomorphic functions at 2. We denote by O. the set of all germs
of holomorphic functions at a. 0=y, 0. 1s called the sheaf of
germs of holomorphic functions on C'[7]. We define a topology on
O as follows. Let £, €0, and let (Uf) be a par defining f.. Let
NOH= b €U) where f, is the germ at b defined by the pair
(Uf). By definition, the sets N}, where (Uf} runs over all pairs
defining f., form a fundamental system of neighborhoods of f.

2, Pseudoconvexity of domains

Proposition 2.1. If a domain Q CC* is domain of holomorphy,
then there is no part of the boundary across which every element
in H(Q}) can be continued analytically.

Proof. Let y:[011>Q be a curve with y(H) €Q for 05t < 1
and a=v(1) €bQl. We suppose that the germ of f at y(0} can be
continued analytically along y and denoted by F. the germ at y(1)
so obtamed. Let (D, F) be a representative of F, where D is a
polvdisc and F &€H(D). By definition of analytic continution, there
is €>0 such that, for I—e<i<l, y(1) €D and the germ of F at
v(?) is the same as the germ of f at y(#). Let U be the connected
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component of DN containing {y(t) : I—e<t<I}. We_ then have
HU=f JU.

For any domain ) of C, by the theorem of Weierstass(6], there
15 a holomorphic function which cannot be continued analytically at
everyt point of b{}. Hence, by Proposition 2.1, Q is a domain of
holomorphy. This is not true for arbituary domains in C*, n>1, as
was firstly pointed out by F. Hartogs[61.

E. E. Levi showed that the boundary of a domain of holomorphy
is not arbitrary and has a kind of convexity called pseudoconvexity.

Definition 2:2. A domzin Q in C" with C° boundary is said to
be (Levi)-péeudoconvex if there exists a defining function @ for O
such that L{®) is positive semi-definite on holomorphic tangent vectors
to bQY (e,

L= % "L @ua, 20

for all z€bQ}, for w €C* satisfying
x od -
;31: -a?(z) w,=0).

A domain of holomorphy is pseudoconvex [2,4,5] but the assertion
that a (Levi)-pseudoconvex domain is 2 domain of holomorphy is
known as the Levi problem.

Definition 2.3. Let Q be a domain in C* such that  C CC*
and it has a C* boundary. Q is said to be strongly (or strictly)
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pseudoconvex if there exists a defining function @ for 2 such that
the Levi form L{®) of P is positive definite on holomorphic tangent
vectors to bf2.

Example 2.4. Let  be the “solid torus” in ¢’ whose major
circle of rotation lies in the x,—x; plane and whose minor circle
of rotation is 1n the ¥, ¥ directions. This region is described by

Q=1 z,) ec’: | z ! ‘4 fz,t 2+%—3\/x3 + xz_< %!

where zi=n+in and z=x+1,.

9 _

Let ®(z,2,)= Iz, | 2+ lz,1 2+4

3 2 2
3 x,-f—x2 —y on .

Then @ is a defining function for Q. The Lewi form is

31w 12 3lw, 12, 3lwxtwy, 2

{ w { 2 -+ I 0 { = T
¢ YN 2 il 40+

Thus the Levi form of @ is positive definite on bQ) if 0<r<-i—

and positive semidefinite if »<: Hence £ is strongly pseudoconvex

only if 0<r<z and pseudoconvex if r__fz.
3. The line bundle and pseudoconvexity on manifolds
Now we consider the pseudoconvexity on complex manifolds.

Definition 3.1. Let X be an n-dimensional complex manifold. We

say that X is a strongly [weakly] pseudoconvex manifold of dimension
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n if there is a function ® &€C”(XR) such that

(1) The Levi form L(®) of ® is everywhere positive definite [semi-
definite] (ie, L(®)2)>0 [>0] on C* where z€X).

2) XC={z X I ®(zj<c] is relatively compact in X for any ¢ €R.

Definition 3.2. A complex manifold £ of # dimension (which
18 countable at infinity) is said to be a Stein manifold if

(1) © is holomorphically convex.

(2) & is holomorphically separable.

(3) For every z €, one can find n functions fi,...,f« €H(Q) which
form a coordinate system at z.

Example 3.3. It was known that ) is a Stein manifold if, and
only if Q is a strongly pseudoconvex manifold [24]. Each domain
of holomorphy in C" is a Stein manifold [4]. Hence every domain
of holomorphy is a strongly pseudoconvex manifold. We know that
a pseudoconvex domain is a domain of holomorphy whence every
pseudoconvex domain is a strongly pseudoconvex manifold.

Take 2n vectors w,...,wn, W=, ..., %) EC"~R™ so that the
un are linearly independent over R. Let F(w,...,w.) denote the
lattice subgroup of C* defined by {muwn+ - +mptwn. - m,EZ, j=1,...,2n
J. We define the complex n-torus T to be the quotient space T"=C"/T.
The quotient map is a local homeomorphism.

Lemma 3.4. 7" is compact.

Proof. To avoid confusion we only think the lemma in the case

of n=1. For zEC, z=mu,+nw.+ran+rw, where m, m&Z and
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057, rn<l. Hence Lzl=[rut+rw]cr'. Let S={rw +rw.: ny. R
with 0<#, 7.<I} and then the function T*>S defined by {z]=[ru:

* vl ran e, is a homeomorphism. Since S is compact, T is
also compact.

Definition 3.5. Let X be an n-dimensional complex manifold. An
n-dimensional complex holomorphic vector bundle E over X consist
of an n-dimensional complex manifold £ and holomorphic map n ! E—=X
which satisfy -

(1) There is an open covering {U,:j &I} of X and biholomorphic
functions 9, : 7' (U)—=UXC" such that

E>myuyBuxe

N/

X DU,

commutes, where nfz, w =z,

(2) For Unl,, there is a holomorphic function 8z : UNU—GL(CY)
such that 8, * 6 (x2)=@®z} x EUNU 2, & €C° if and only if Bu(x)
=2

These functions 6, the so-called transition functions, satisfy the
(cocycle) conditions.

Definition 3.6. Let E and F be vector bundles and {6} and
{ns] transition functions of E and F, respectively. We say that E
and F are equivalent if there are holomorphic maps 4k, U>GLCY)
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such that w/a=h8, for all sk &L

Remark. 1. If £ is a I-dimensional complex manifold, we shall
refer to E as a line bundle.

2. We shall always identify equivalent holomorphic line bundles
and HLB(X) denote the group of all equivalence classes of holomorphic
line bundles.

Let X be a Hausdorff paracompact space and let O be a sheaf
over X. Fix a locally finite covering 2 ={U} ; of X.

Let Co2,00=1(g) o g SHU)} and let C@Z. 0=l ),
e1 Gy HSHU, ) and g i skewsymmetric in the indices
Jore-ri} Set f=¢f ) el eC’ ,0). We define

W Il e,

5 0.0 ,0) by FUO=CYN, )

p+1 “ " .
-——k_%(hl)" f,,. A ey where A means omit. We define

2 0)=feCx ,0)  &f=0l,
B2 0)=8(C'(% ,0) C2,0), and
e ,0)=2%% ,0)/B'(% ,0).

Theorem 3.7. HLB(T") is canonically isomorphic to HYT" @)
where O is the sheaf over 7" of nonvanishing holomorphic functions

in which the module operation on each stalk is multiplication.

Proof. Let E be a line bundle and {6} the transition functions
of E. Since {6,} satisfies the cocycle conditions, (8, EZYU,0") where
%=1U}a be an open covering of T". If E and F are equivalent,
then there are nonvanishing holomophic function A ! U—>C" such that
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—kjeﬂ\hk or 1, —Gmhlhk » that is, (n,)=(6,)(8(h)). Thus an equivalence
class of bundies defines an element [(9 Y eH'\w ,0) CHY(T"0).

Conversely, let & €H(T".0). Then &= [(9 )] and we can find an
open covering % “{U’ } of T" such that (0 & '@ ,0)[41. Consider
a set Z=U{UXC]. We define relation “~" on Z by (x2~(k2)
iff x=y and z= eka% Since (9,1) satisfies the cocycle conditions,
“~” is an equlvalence relation. Put E&)=2Z/~. Define a map = : E&)
=7 by nf(ixz J1=x and then nis holomorphic. Define a map 6 :

n (U)->U><C by 8LGxz)]= (xz) and then 8 is hholomorphic. Let
x€UNU, If 68, '(r.2)= (xz), then 68, 'z)= Gf(kx,z)] =(xz). Since 6
[( 32, )}—(x,zi), O,x,zgﬁ—(k,::,zk) SO zhat 911(4]‘—4‘.. Hence B is ¢-ho¢9mr
phic line bundle over T" with transition functions {Oﬂ\}. The map
E>E®) is an isomorphism of groups of H(T"0) with HLB(T"). So,
we shall always 1dentify equivalent holomorphic line bundles and we
call H(T"0) the group of holomorphic line bundies over T'.
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