Nonlinear semigroups on locally convex spaces

Son Kuk Hyeon

Abstract

Let E be a locally convex Hausdorff space and let Γ be a calibration for E. In this note we proved that if E is sequentially complete and a multi-valued operator A in E is Γ-accretive such that $D(A) \subset R (I + \lambda A)$ for all sufficiently small positive λ, then A generates a nonlinear Γ-contraction semigroup $\{T(t): t > 0\}$. We also proved that if E is complete, Γ is a dually uniformly convex calibration, and an operator A is m-Γ-accretive, then the initial value problem

$$\begin{cases}
\frac{d}{dt} u(t) + Au(t) & \geq 0, \ t > 0, \\
u(0) = x
\end{cases}$$

has a solution $u : [0, \infty) \rightarrow E$ given by $u(t) = T(t)x = \lim_{n \rightarrow \infty} (I + \frac{n}{t} A)^{n} x$ for each $x \in D(A)$.

1. Γ-completions

Let E be a locally convex space and let Γ be a calibration for E, i.e., Γ is a direct set of semi-norms on E which induces the topology of E. For $p \in \Gamma$, a sequence $\{x_n\}$ in E is called a p-Cauchy...
sequence if \(p(x_i - x_j) \to 0 \) as \(i, j \to \infty \). Two \(p \)-Cauchy sequences \(\{x_i\} \) and \(\{y_i\} \) are said to be equivalent if \(p(x_i - y_i) \to 0 \) as \(i \to \infty \). Let \(\{x_i\} \) be a \(p \)-Cauchy sequence and \(\mathcal{X} \) be the set of all \(p \)-Cauchy sequences in \(E \) which are equivalent to \(\{x_i\} \). Such a set \(\mathcal{X} \) is called a \(p \)-class on \(E \). The set of all \(p \)-classes on \(E \) will be denoted by \(E[p] \) and it will be called the \(p \)-completion of \(E \). For \(x, y \in E[p] \) and real numbers \(\alpha, \beta \), \(\alpha x + \beta y \) is defined to be the \(p \)-class which contains a \(p \)-Cauchy sequence \(\{\alpha x_i + \beta y_i\} \) for some \(\{x_i\} \subseteq \mathcal{X} \) and \(\{y_i\} \subseteq \mathcal{Y} \). Then \(E[p] \) is a real vector space.

For \(x \in E[p] \), we define
\[
p(x) = \lim_{i \to \infty} p(x_i) \quad \text{for} \quad \{x_i\} \subseteq \mathcal{X}.
\]

Then the value \(p(x) \) does not depend on the choice of \(\{x_i\} \) from \(\mathcal{X} \).

In is obvious that \(p \) is a norm on \(E[p] \) and, with this norm, \(E[p] \) is a Banach space. The family of Banach spaces \(\{E[p] : p \in \Gamma \} \) defined in this way will be called the \(\Gamma \)-completion of \(E \). We denote by \(S_p(x) \) the \(p \)-class which contains the \(p \)-Cauchy sequence whose terms are all identical to \(x \). Then the zero element of the Banach space \(E[p] \) is \(S_p(0) \) and we have

\[
p(S_p(x)) = p(x) \quad \text{for every} \quad x \in E.
\]

Let \(\{E[p] : p \in \Gamma \} \) be the \(\Gamma \)-completion of \(E \). First we have a linear and continuous map

\[
S_p : E \to E[p] : x \mapsto S_p(x),
\]
which satisfies the equality \(p(S_t(x)) = p(x) \) for every \(x \in E \). Next, when \(p \geq q \) in \(\Gamma \), that is, \(q(x) \geq p(x) \) for every \(x \in E \), we have the natural embedding

\[
T_{q,p} : E[q] \to E[p],
\]

which maps every \(x \in E[q] \) to be the \(p \)-class which contains elements of \(x \). Obviously, this map is linear,

\[
p(T_{q,p}(x)) \leq q(x) \quad \text{for every } x \in E[q]
\]

and

\[
T_{q,p} \cdot S_q = S_p.
\]

2. \(\Gamma \)-contractions and \(\Gamma \)-accretive operators

Let \(E \) and \(F \) be locally convex spaces and let \(\Gamma \) be a calibration for \((E,F)\). In other words, each \(p \in \Gamma \) has the \(E \)-component \(p_E \) and the \(F \)-component \(p_F \) and \(\Gamma_E = \{ p_E : p \in \Gamma \} \) and \(\Gamma_F = \{ p_F : p \in \Gamma \} \) are calibrations for \(E \) and \(F \), respectively. We shall denote the embeddings \(S_{p_E} \) and \(S_{p_F} \) by the same \(S_p \).

We shall deal with multi-valued operators. By a multi-valued operator \(A \) in \(E \) we mean that \(A \) assigns to each \(x \in D(A) \) a subset \(Ax \neq \emptyset \) of \(E \), where \(D(A) = \{ x \in E : Ax \neq \emptyset \} \). And \(D(A) \) is called the domain of \(A \), and the range of \(A \) is defined by \(R(A) = \bigcup_{x \in D(A)} Ax \).

Let \(A \) be a multi-valued operator from \(E \) into \(F \), that is, \(A \) is a subset of \(E \times F \). For \(p \in \Gamma \) and \([x,y] \in A \), we set
\[S_p([x,y]) = [S_p(x), S_p(y)]. \]

Then \(S_p(A) \subseteq E[p] \times F[p] \) and we set

\[A_p = \overline{S_p(A)} \]

where the closure is taken in the product \(E[p] \times F[p] \) of Banach spaces \(E[p] \) and \(F[p] \). Hence \(A_p \) is always closed and \(A_p = (A)_p \).

Lemma 2.1[6]. (i) \(\overline{A} = \bigcap_{p \in T} S_p^{-1}(A_p) \),

(ii) \(\overline{D(A)} = \bigcap_{p \in T} S_p^{-1}(\overline{D(A)}) \),

(iii) \(\overline{D(A)} = \overline{S_p(D(A))} \).

Lemma 2.2[6]. Assume that \(q \geq 1 \) in \(T \). Then for every \(x = \frac{e}{q} D(A_q) \),

(i) \(T_{q,q'} x \in D(A_p) \),

(ii) \(T_{q,q'} A_q x = A \frac{e}{q} T_{q,q'} x \).

Recall that a multi-valued operator \(A \) in a Banach space \(X \) with its norm \(\| \cdot \| \) is said to be accretive if for each \(x, y \in D(A) \), \(y \in Ax \), \(y \in Ax \), and for every \(\lambda > 0 \), the following inequality holds

\[\| (x + y) - (x + y) \| \geq \| x - y \| \].

Moreover, if \(R(I + \lambda A) = X \) then \(A \) is said to be \(m \)-accretive.
Let Γ be a calibration for a locally convex space E.

Definition 2.3. An operator f from a subset $D(f)$ of E into E is said to be a Γ-contraction if

$$p(f(x)) - f(y)) \leq p(x-y)$$

for all $p \in \Gamma$ and $x,y \in D(f)$.

When f is a Γ-contraction and $p \in \Gamma$, $\{f(x)\}$ is p-Cauchy sequence whenever $\{x\}$ is a p-Cauchy sequence, hence for every $x \in S_p(D(f))$ we can set

$$f_p(x) = \lim_{n} S_p(f(x)).$$

Then f_p is a contraction of $S_p(D(f))$ into $E[p]$ and

$$f_p \cdot S_p = S_p \cdot f.$$

Definition 2.4. An operator $A \in E \times E$ is said to be Γ-accretive if, for every $\lambda > 0$, $(I + \lambda A)^{-1}$ is a single-valued Γ-contraction. If, furthermore, $R(I + \lambda A) = E$, then A is said to be m-Γ-accretive. Where I is an identity operator on E.

Lemma 2.5[6]. For any operator $A \in E \times E$ and $\lambda > 0$,

(i) $(I + \lambda A)_p = I + \lambda A_p$ for all $p \in \Gamma$,

(ii) $(I + \lambda A)^{-1}_p = (I + \lambda A_p)^{-1}$.

Lemma 2.6[6]. (i) If A is m-Γ-accretive, every A_p is m-accretive,
(ii) If E is complete, A is closed and every A_p is m-accretive, then A is m-Γ-accretive,

(iii) A is Γ-accretive if and only if every A_p is accretive,

(iv) A m-Γ-accretive operator $A \subseteq E \times E$ is closed in $E \times E$.

(v) If A is m-Γ-accretive and $x \in D(A)$, then Ax is closed.

3. Theorems

Definition 3.1. Let E be a locally convex space with a calibration Γ and let $\{T(t) : t \geq 0\}$ be a family of nonlinear operators from a closed subset C of E into itself satisfying the following conditions:

(i) $T(0) = I$ (identity), $T(t+s) = T(t)T(s)$ for $t, s \geq 0$.

(ii) For every $x \in C$, $T(t)x$ is continuous in $t \geq 0$.

(iii) For all $p \in \Gamma$, $t \geq 0$, and, $x, y \in C$,

\[p(T(t)x - T(t)y) \leq p(x - y). \]

Then we shall call this family $\{T(t) : t \geq 0\}$ a nonlinear Γ-contraction semigroup.

Theorem 3.2. Let E be a sequentially complete, locally convex Hausdorff space with a calibration Γ and A be a Γ-accretive operator in E such that $\overline{D(A)} \subseteq R(I + \lambda A)$ for all sufficiently small positive λ. Then
Nonlinear semigroups on locally convex spaces

(3.1) \[T(t)x = \lim_{n \to \infty} (I + \frac{t}{n} A)^n x \]
exists for \(x \in \overline{D(A)} \), uniformly in \(t \) on every compact interval of \([0, \infty)\). Moreover, \(T(t) \) defined by the formula (3.1) is a \(\Gamma \)-contraction semigroup on \(D(A) \).

Proof. If \(A \) is \(\Gamma \)-accretive and \(\overline{D(A)} \subset R(I + \lambda A) \), then, for every \(p \in \Gamma \), \(A_p \) is accretive and \(\overline{D(A_p)} \subset R(I + \lambda A_p) \). Thus, for \(p \in \Gamma \) and \(x \in D(A_p) \),

\[p((I + \frac{t}{n} A_p)^n x) = p((I + \frac{t}{m} A_p)^m x) \]

exists and \(\{ p((I + \lambda A_p)^n x) : t \geq 0 \} \) is a contraction semigroup on \(\overline{D(A_p)} \) ([2]). Let \(x \in \overline{D(A)} \) and let \(n \) and \(m \) be positive integers such that \(n \geq m \). Then, for any \(p \in \Gamma \),

\[p((I + \frac{t}{n} A)^n x - (I + \frac{t}{m} A)^m x) = p((S_p(I + \frac{t}{n} A)^n x - S_p(I + \frac{t}{m} A)^m x)) \]

\[= p((S_p(I + \frac{t}{n} A)^n - (I + \frac{t}{m} A)^m S_p(x)) \]

\[\leq 2n \frac{1}{n} \frac{1}{m} \inf \{ p(x) : x \in A_p S_p(x) \} \]

and hence \(p((I + \frac{t}{n} A)^n x - (I + \frac{t}{m} A)^m x) \to 0 \) as \(n, m \to \infty \).

Therefore \(\lim_{n \to \infty} (I + \frac{t}{n} A)^n x = T(t)x \) exists uniformly in \(t \) on every compact subset of \([0, \infty)\). Then, for every \(p \in \Gamma \) and \(x \in \overline{D(A)} \),

\[S_p(T(t)x) = S_p(\lim_{n \to \infty} (I + \frac{t}{n} A)^n x) \]

\[= \lim_{n \to \infty} S_p(I + \frac{t}{n} A)^n x \]

\[= \lim_{n \to \infty} (I + \frac{t}{n} A)^n S_p(x) \]
and hence $T(t)x \in D(A)$. Since $(I + \frac{t}{n}A)^n$ is Γ-contraction, we find that $p(T(t)x - T(t)y) \leq p(x - y)$ for every $t \geq 0, x, y \in D(A)$, and for all $p \in \Gamma$. Therefore $T(t)$ is Γ-contraction on $\overline{D(A)}$. Moreover, for all $p \in \Gamma$ and $x \in D(A)$, we obtain

$$p(T(t)x - T(t)y) = p(S_p(T(t)x) - S_p(T(t)y))$$

$$= p(T^p(t)x) - T^p(t)y)$$

$$\leq 2 |t-s| \cdot \inf \{p(x) : x \in A, S_p(x)\} \quad (2).$$

In particular, this shows that $T(t)x$ is continuous in x for every $x \in D(A)$. In order to complete the proof, we shall verify the semigroup property $T(t+s) = T(t)T(s)$. For all $p \in \Gamma$ and $t, s \geq 0$, we have

$$S_p(T(t+s)x) = T^p(t+s)x)$$

$$= T^p(t)T^p(s)x)$$

$$= T^p(t) (S_p(T(s)x))$$

$$= S_p(T(t) T(s)x), \quad \text{for } x \in D(A).$$

Since E is Hausdorff, $T(t+s) = T(t)T(s)$ for $t, s \geq 0$. This completes the proof.
We shall call a calibration Γ dually uniformly convex if, for every $p \in \Gamma$, $E[p]$ and its dual are uniformly convex.

Lemma 3.3. Assume that B is a closed subset of E and

$$S_p(x) \in S_p(B) \text{ for all } p \in \Gamma.$$

Then $x \in B$.

Theorem 3.4. If E is complete, locally convex Hausdorff space with a dually uniformly convex calibration Γ and A is an m-Γ-accretive operator in E. Then for each $x \in \mathcal{D}(A)$ the initial value problem

$$(E) \left\{ \begin{array}{l}
\frac{du}{dt}(t) + Au(t) \ni 0, \\
u(0) = x
\end{array} \right.$$

has a solution $u : [0, \infty) \rightarrow E$ given by $u(t) = T(t)x = \lim_{n \to \infty} (I + \frac{t}{n} A)^n x$, $t \geq 0$.

Proof. By theorem 3.2, for each $x \in \mathcal{D}(A)$, $T(t)x = \lim_{n \to \infty} (I + \frac{t}{n} A)^n x$ exists. Since A is m-Γ-accretive and Γ is a dually uniformly convex calibration, A_p is m-accretive and $E[p]$ is uniformly convex space for every $p \in \Gamma$. Hence the initial value problem

$$\left\{ \begin{array}{l}
\frac{du}{dt}(t) + A_p u(t) \ni S_p(0), \\
u(0) = S_p(x)
\end{array} \right.$$
has a unique solution \(u : [0, \infty) \to E[\rho] \) given by

\[
u_p(t) = T^f(t)S_p(x) = \lim_{n \to \infty} (I + \frac{t}{n} A_p)^n S_p(x) \quad (11).
\]

Then, if \(q \geq p \) in \(\Gamma \), \(T_{q, q}^{-\rho}(0) = T_{q, q} S_p(x) = S_p(x) \) and

\[
T_{q, q} \left(\frac{d}{dt} u_q(t) + T_{q, q} A u_q(t) \right) \supseteq T_{q, q} S_q(0),
\]

which implies

\[
\frac{d}{dt} T_{q, q} u_q(t) + A \rho T_{q, q} u_q(t) \supseteq S_p(0), t \geq 0.
\]

Hence, by the uniqueness of solution, \(T_{q, q}^{-\rho} u_q(t) = u_q(t) \) for \(t \geq 0 \). Since \(E \) is complete, there exists \(u(t) \in E \) such that \(u_p(t) = S_p(u(t)) \) for all \(p \in \Gamma \) and \(t \geq 0([A]) \). Then, for all \(p \in \Gamma \) and \(t \geq 0 \),

\[
S_p(u(t)) = u_p(t) = \lim_{n \to \infty} (I + \frac{t}{n} A_p)^n S_p(x)
\]

\[
= \lim_{n \to \infty} (I + \frac{t}{n} A)^n S_p(x)
\]

\[
= S_p(T(t)x).
\]

Hence \(u(t) = T(t)x = \lim_{n \to \infty} (I + \frac{t}{n} A)^n x \) for \(x \in D(A) \) and \(t \geq 0 \). Furthermore, for all \(p \in \Gamma \) and \(t \geq 0 \),

\[
S_p \left(\frac{d}{dt} u(t) + A u(t) \right) \supseteq S_p(0).
\]
Then, by lemma 3.3, we have
\[
\frac{d}{dt}u(t) + Au(t) \geq 0.
\]
Therefore \(u(t) = T(t)x = \lim_{n \to \infty} (I + \frac{t}{n}A)^nx \) is a solution of the initial value problem \((E)\).

References

Pusan National University
Pusan 609–735, Korea