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On the Total Curvature of Manifolds Immersed
in a Euclidean Space

Yong-Soo Pyo and Sun-Sick Jang

1. Introduction

S.S.Chern and RXK.Lashof([3]) studied the total absolute curvature
of immersed manifolds in a higher Euclidean space firstly through
the Lipschitz-Killing curvature, and N.HXuiper((4]) who studied this
area was contemporary with them.

Later, many mathematicians studied for the total absolute curvature
{or total mean curature) of immersed manifolds ([1}, {21, (6], [7],
(8] and [9] etc).

For an n-dimensional compact manifold M immersed mn a Euclidean
m-space E” and the total absolute curvature T(M") (that is, the intergral
of the absolute value of the Lipschitz-Killing curvature over the unit
normal bundle of M" if it exists) of M*, one of results Chern-Lashof
and Kuiper proved in their papers [3, II] and [41.

(LD TAM) 2 Coy BM"),

where C,-: is the volume of the unit (m—I)-sphere S”7! and SBAL")
is the sum of the betti numbers of M". The nght-hand side of
(1.1) depends on the coefficient field. And we know the Gauss-Bonnet

theorem for a compact surface M in E".
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(1.2) MG dv=2n M),

where Gff) is the Gauss curvature at p in M and yM) is the
Euler characteristic of M. Besides, for any compact mantfold M* immer-
sed in E”, the inequality

(1.3) S &) dv) C.

was proved in [1I] and [7], where ap) is the length of the mean
curvature vector of M" at p.

We have found that the idea in B.Y.Chern's(L1, Ii]) was to
choose the so-called Frenet frame e, e, e, ¢ In E' so that the
Lipschitz-Killing curvature K{(p,¢) at (pe) is given by

(1.4) K(pe)= Mp) cos’0+ (D) sin’6 A(p) 2 1),

where e= Xil-xos@e;tsinfle, is a unit normal vecter at p.

In this paper, we have generalized this idea of choosing suitable
local field of orthonormal frames e, e, '*¢. so that the partial Gauss
curvatures A(b)? M)} - 2 Adp) and K(p,e)=(— L) Mlp)cosnBusrt -2
(P)cos™8u+a for a unit normal vector e= Zi.«.cosD.e, at p if the N-
index of M" at p is d, and obtained some results for the total
curvature of a manifold M immersed in E™

2. Preliminaries

Let E* be an n-dimensional manifold mmersed in a Euclidean
space E* of dimension m(mn). We choose a local field of orthonormal
frames e;,'"e, in E" such that, restricted to M", the vectors ¢, - .

are tangent to M"(and consequently, €.+5,°*2. are normal to M.
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We shall make use of the following convention on the ranges of
indices -
2.1) 1 s j<{ns ntilr{m:;

1{A B C<{m

unless otherwise stated. With respect to the frame field of E™ chosen
above, let @, -.@* be the field of dual frames. Then the structure
equations of E” are given by

2.2) dws = Fows s, ouzt 0=0,
daoe = }gwgu GXxa.

We rtestrict these forms—to M*. Then ®=0. Since 0=do.=Z. o
o, by Cartan’'s lemma we may write

@3 o = Zko k=7

From these formulas, we obtain

2.4) daon = glm,naz, dm,zgimmaxb‘f“%}gﬁwwm,

where Ry denotes the curvature tensor on the manifold M". Thus
we obtain

@5)  Rw-S (k= huky).

We call h=3Z,, 7, & we, the second fundamental form of M®. The
mean curvature vector H is given by %-Z, (Zh e

For a normal vector e=X,a.¢ at p in M, the second fundamental
form A(pe) at (pe) is given by (T.wh)) as nX#n matrx. The Lips-
chitz-killing curvature K(p,e} is defined by
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(2.6) K(p,e) = (— 1) det(A(pe)).

3. Some Results

For each p €M, we denote by 7, the normal space of M" at
p. We define a linear mapping y from 7, into the space of all
symmetric matrices of order n by

G NZ ae=Z o Ape,).

Let O, denote the kernel of y. Then we have A(p,e)=0 for any
e€0, and dim O,>m _222(” + 3). We define the N-index of M
at p by

(3.2) N—index,=m—n—dimO,.

In fact, the N-index of any surface M is { 3 everywhere.

Suppose that the N-index of M™ at p is d. Then we choose & £n
at p in such a way that e,+sss, "6« €0,. For any unit normal vector
e=Z cos B¢, at p, the Lipschitz-Killing curvature K(pe) at (pe) is
a form of degree » on cos@. Hence, by choosing a suitable unit
orthogonal vectors €..:**£.+« at p, we may write

3.3 K(p.e) = (— 1" (A(b)eos"Ourrt* + Ap)eos 6 o),
L) 2 - 2 Adp).

Theorem 1. Let M be an n-dimensional compact manifold immer-
sed in a Euclidean m-space E™. If the N-index of M* { d everywhere
and A ) 0, then the total absolute curvature TYM") of M’ is given
by



On the Total Curvature of Manifolds lmmersed in a Euclidean Space 127

ZCan -J

u

(3.4) ™) € , Z AdD) do,

where C, is the volume of the unit m-sphere S®. The equality sign
holds when and only when A,#0, and # is even or A=0.

Proof. From (3.3), the total absclute curvature K*p) at p is given
by

(3.5) K*p) = fort | Kpo) tdo  EAB) fort |06 | do
Cm ~1

—zx(p) flcoselare
— 2Cw—1
. ;_:,Mw

by spherical integration [5], where S™ """ is the unit hypersphere
of T; do is the volume element of S™ "' and T is the Gamma
function. Therefore the total absolute curvature 7(M"} of M” is given
by

2C.. 1

(3.6) TM) = fir K@) dv £ / z Mp) dv.

If the equality sign of (3.6) holds, the inequality in (3.5) is actually
equality. Since A; ) )X 0, n is even or A,=0. If A, =0, then
this is impossible because T(M") ) 2C.-:(see(3,1]). Hence A,F0.
The converse of this is trivial.

And also, we can prove the following theorem.

Theorem 2. Let M" be an n-dimensional compact manifold immer-
sed in Euclidean m-space E”. If the N-index of M"{d everywhere
and L0, then we have

2C 2Cm-1

(3.7 T { — fr >: A(p) db.
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If the equality sign holds when and only when A0, and n is
even or Ay, =40,

Corollary 3. Let M* be a compact manifold immersed in E™
with N-index of M*{d everywhere. If [,»Z&: | A(®) | dv Z%C. ,
then M* is homeomorphic to a sphere S* of n-dimensions.

Proof. By Theorem 1 and Theorem 2, we have

2Cu1 [ 4
o I Mp)do.

Hence we abtain T7(M")  3C.-; by the assumption. Therefore M"
is homeomorphic to S (see[3,I]).

(3.8) T0r) £

We have -the following corollary by (1.1) and (3.8).

Corollary 4. Let M" be a compact manifold immersed in E™
with the N-index of M* { d everywhere. Then we have

B9 Cam2f. L1 amp)ldy
where S(M*) is the sum of the betti numbers of M"
And also, we abtain the following corollary.

Corollary 5. Let M be a compact manifold immersed in E"
with even dimension n. If the N-index of M"{d everywhere, then
we have

G10) T fir @) dv ) 2Cus fur 3 Mp) o,

where o(p) is the lengh of the mean curvature vector H at p in
M.

Proof. By spherical integration, the total absolute curvature K*(p)
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at p is given by

(3.11) K*p) > E A(B) Jsn-1 008" 6uvr do = ggg—‘q ALD).

Hence we have

(3.12) ™me) ) S

e e Ap) do.

Therefore we complete a proof of the corollary by (1.3).
Theorem 6. Let M be a compact surface in E”. If the N-index
of M is 2 and A.=0. Then M is homeomorphic to a Z2-sphere.
Proof. From (3.3), since G(p)=hi(p), we have
(313 K*P) = M) [=-s cos’Gdo
= M(p) Cui-i

Cs
= .93:1
= - Gi)

[eos?0d0

by spherical integration, where G{p) is the Gauss curvature at p
in M. Hence the total absolute curvature TYM) of M is given by

(3.14) TM) = [y K*p) dv = Cu-s X(M)

by (L2), where x(M) is the Euler chracteristic of M. Since T(M}
Cu-1B(M)  (see (L1)), xM)2BM). Therefore xM)=pM)=2. Hence

M is homeomorphic to a 2-sphere.

From Theorem 6, we can prove the following corollary because
G=N+d2tXs on a surface M in E™

Corollary 7. Let M be a compact surface in E* with A=0.
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Then M is homeomorphic to a 2-sphere.

Theorem 8. Let M' be a compact manifold immersed in E”.
Then we have

(3.15) S R D)avin® frer a?(p)dv,
where R(p) is the scalar curvature at p in M".
Proof. From (2.5), the scalar curvature R is given by

(3.16) R= %‘,R@
=SEK) - EhF
= nd-$,

where S=(%,.(h)). Hence R(p) { »oXp) for at any point p in
M, since S#0. Therefore this completes a proof the theorem.
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