PROPERTIES OF THE GENERALIZED EVALUATION SUBGROUP OF A TOPOLOGICAL PAIR

Moo Ha Woo

Let X be a topological space and A be a subspace of X. A homotopy $H : X \times I \to X$ is called a cyclic homotopy [Go] if

$$H(x, 0) = H(x, 1) = x.$$

If H is a cyclic homotopy and $x_0 \in A$ is a base point, the loop given by $h(s) = H(x_0, s)$ is called the trace of H.

The set of homotopy classes of those loops which are the trace of some cyclic homotopy form a subgroup $G(X, x_0)$ which is called the evaluation subgroup of the fundamental group $\pi_1(X, x_0)$ [Go]. $G(X, x_0)$ is denoted $J(X)$ by Jiang [J2]. If we consider the class of continuous functions $H : A \times I \to X$ such that $H(x, 0) = H(x, 1) = i(x)$ and $i : A \to X$ is the inclusion, then the trace $h(s) = H(x_0, s)$ of H is a loop at x_0 in X. In this case, H is called an affiliated homotopy to $[h]$ with respect to A. The trace subgroup $G(X, A, x_0)$ of $\pi_1(X, x_0)$ is defined by $G(X, A, x_0) = \{ \alpha \in \pi_1(X, x_0) :$ there exists an affiliated homotopy H such that $[H(x_0, \cdot)] = \alpha \}$. In particular, we have that $G(X, X, x_0) = G(X, x_0)$ and $G(X, x_0, x_0) = \pi_1(X, x_0)$.

Let A be locally compact and regular, and X^A be the space of mappings from A to X with compact open topology. The map $\rho : X^A \to X$ given by $\rho(g) = g(x_0)$ is continuous. Thus ρ induces a homomorphism $\rho_* : \pi_1(X^A, i) \to \pi_1(X, x_0)$. In this case, the image of ρ_* is $G(X, A, x_0)$ [WK]. Thus $G(X, A, x_0)$ is called the generalized evaluation subgroup of the fundamental group. It is clear that $G(X, x_0)$ is a subgroup of $G(X, A, x_0)$.

In [J2], Jiang showed that $J(X) = G(X, x_0)$ is a subgroup of $Z(\pi_1(X, x_0))$. We generalize this result as follows:

Received October 4, 1989.
Research supported by Korea Science and Engineering Foundation.

121
Theorem 1. \(G(X, A, x_0) \) is contained in \(Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0)) \),
where \(Z(H, K) \) denotes the centralizer of a subgroup \(H \) of \(K \).

Proof. Let \(\alpha \in G(X, A, x_0) \). Then there exists an affiliated homotopy \(H : A \times I \to X \) such that \(H(x, 0) = H(x, 1) = i(x) \) and \([H(x_0)] = \alpha \). Let \(\beta = [f] \) be any element of \(\pi_1(A, x_0) \). We must show that \(a_i*(\beta) = i_*(\beta) \alpha \). Let \(K = H(f \times 1) : I \times I \to X \). Define a homotopy \(G : I \times I \to X \) by

\[
G(s, t) = \begin{cases}
K(2s(1-t), 2st), & 0 \leq s \leq 1/2 \\
K(1 - (2-2s)t, (2-2s)t + 2s - 1), & 1/2 \leq s \leq 1.
\end{cases}
\]

Then \([G(, 0)] = i_*(\beta) \alpha \) and \([G(, 1)] = a_i*(\beta) \). Since \(G(0, t) = x_0 = G(1, t) \), we have \(a_i*(\beta) = i_*(\beta) \alpha \).

Corollary 2. \(J(X) = G(X, X, x_0) \) is a subgroup of \(Z(\pi_1(X, x_0), \pi_1(X, x_0)) = Z(\pi_1(X, x_0)) \).

If \(A \) is a connected aspherical polyhedron, then the reverse is also true.

Theorem 3. If \(A \) is a connected aspherical polyhedron and \(A \subset X \), then \(G(X, A, x_0) = Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0)) \).

Proof. By the previous theorem, it was proved that \(G(X, A, x_0) \) is contained in \(Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0)) \).

The proof of the reverse is quite analogous to Theorem 10 [7A, Br].

Take a triangulation \((K, \tau) \) of \(A \) and choose \(x_0 \in A^0 \) (0-skeleton of \(A \)). Define a map \(h : (A \times \{0\}) \cup (A^0 \times I) \to A \)

by

\[
h(x, t) = \begin{cases}
x, & \text{if } t = 0 \\
C_x(t), & \text{if } x \in A^0
\end{cases}
\]

where \(C_x \) is a path from \(x \) to \(x_0 \) and \(C_x(t) \) is the trivial path. Then there exists an extension \(H : A \times I \to A \) of \(h \). Define \(d : A \to A \) by \(d(x) = H(x, 1) \). Then the map \(d \) is homotopic to \(1_A \) and \(d(A^0) = x_0 \). Define \(i = i \circ d \), then \(i(A^0) = x_0 \). Let \(\alpha \) be an element of \(Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0)) \) and \(\alpha = [c] \). Define \(h_1 : Q^1 = A \times \partial I \cup A^0 \times I \to X \) by

\[
h_1(x, u) = \begin{cases}
i(x), & \text{if } u = 0 \text{ or } u = 1 \\
c(u), & \text{if } x \in A^0
\end{cases}
\]

For 1-simplex \(s_j \) of \(K \), let \(\sigma_j = \tau(\{c|s_j\}) \times \{0\} \subset Q^1 \). Then there is a homeomorphism \(\phi_j : I \to \sigma_j \). Define \(c_j = h_1 \circ \phi_j = i \circ \phi_j = i \circ d \circ \phi_j \) but \(d \circ \phi_j \) is a loop in \(A \) based at \(x_0 \). Therefore \([c_j] = [i \circ d \circ \phi_j] = i_*(d \circ \phi_j) = i_*(\pi_1(A, x_0)) \). Since \(\alpha = [c] \) is contained in \(Z(i_*(\pi_1(A, x)), \pi_1(X, x_0)) \), [c]
Properties of the generalized evaluation subgroup of a topological pair

\([c_j] = [c_j][c]\). Therefore, there exists a map \(L_j : I \times I \to X\) such that \(L_j(t, 0) = L_j(t, 1) = c_j(t)\) and \(L_j(0, u) = L_j(1, u) = c(u)\) for all \(t, u \in I\). Define \(H_j : \sigma_j \times I \to X\) by \(H_j(x, u) = L_j(\phi_j^{-1}(x), u)\). If \((x, u) \in \partial_0(\sigma_j \times I) \subset Q^1\), then \(H_j(x, u) = h_1(x, u)\). Write the 1-simplices of \(K\) as \(s_1, s_2, \ldots, s_{r(1)}\); then \(Q^2 = (A \times \partial I) \cup \bigcup_{j=1}^{r(1)} (\sigma_j \times I)\). Extend \(h_1\) to a map \(h_2 : Q^2 \to X\) by

\[
h_2(x, u) =
\begin{cases}
 i(u), & \text{if } u = 0 \text{ or } u = 1 \\
 H_j(x, u), & \text{if } x \in \sigma_j \text{ for some } j = 1, \ldots, r(1).
\end{cases}
\]

Assume that \(h_2\) has been extended to a map \(h_p : Q^p \to X\), \((p \geq 2)\). Take some \(p\)-simplex \(s_j\) of \(K\) and again define

\[
\sigma_j = \tau(d|s_j|) \times \{0\} \subset A \times \{0\}.
\]

Since \(\partial(\sigma_j \times I) \subset Q^p\), we have the restriction \(h_{p,j} : \partial(\sigma_j \times I) \to X\) of \(h_p\). We assumed that \(A\) was aspherical, so \(\pi_p(A, x_0)\) is trivial. Since \(\sigma_j \times I\) is homeomorphic to \(I^{p+1}\), we can extend \(h_{p,j}\) to a map \(h_{p+1,j} : \sigma_j \times I \to X\). Write the \(p\)-simplices of \(K\) as \(s_1, \ldots, s_{r(p)}\), and define \(h_{p+1} : Q^{p+1} \to X\) by

\[
h_{p+1}(x, u) =
\begin{cases}
 i(x), & \text{if } u = 0 \text{ or } u = 1 \\
 h_{p+1,j}(x, u), & \text{if } x \in \sigma_j \text{ for some } j = 1, \ldots, r(p).
\end{cases}
\]

Then \(h_{p+1}\) is an extension of \(h_p\). Since \(Q^n = A \times I\) for some \(n\), we have proved the existence of a map \(H = h_n : A \times I \to X\) whose restriction on \(Q^1\) is \(h_1\). Thus \(H(x, 0) = H(x, 1) = i(x)\) and \(H(x_0, u) = h_1(u) = c(u)\).

Since \(d\) is homotopic to \(1_A\), there is a homotopy \(G\) from \(id\) to \(i\) (rel \(x_0\)). Define \(K : A \times I \to X\) by

\[
K(a, s) =
\begin{cases}
 G(a, 1-3s), & 0 \leq s \leq 1/3 \\
 H(a, 3s-1), & 1/3 \leq s \leq 2/3 \\
 G(a, 3s-2), & 2/3 \leq s \leq 1.
\end{cases}
\]

Then \(K(a, 0) = i(a) = K(a, 1)\) and \(K(x_0, u) = c(u)\). Therefore \([c]\) is an element of \(G(X, A, x_0)\).

Corollary 4. If the inclusion \(i : A \to X\) has a left homotopy inverse, then \(G(X, A, x_0) \cap i_*(\pi_1(A, x_0))\) is contained in \(i_*(Z(\pi_1(A, x_0)))\).

Proof. Let \(1\) be a left homotopy inverse of \(i\). Then \(1 \circ i\) is homotopic to \(1_A\) and hence \(i_*\) is a monomorphism. Let \(\alpha\) be an element of \(G(X, A, x_0) \cap i_*(\pi_1(A, x_0))\). Then \(\alpha = i_*(\beta)\) for some \(\beta \in \pi_1(A, x_0)\). Let \(\gamma\) be any element of \(\pi_1(A, x_0)\). Since \(G(X, A, x_0) \subset Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0))\), \(\alpha = i_*(\beta) \in G(X, A, x_0)\) and \(i_*(\gamma) \in i_*(\pi_1(A, x_0))\), we have \(i_*(\gamma)\)
\(i_*(\beta) = i_*(\beta) i_*(\gamma) \). Therefore \(\gamma \beta = \beta \gamma \) This implies \(\beta \in Z(\pi_1(A, x_0)) \). Hence \(\alpha = i_*(\beta) \) belongs to \(i_*(Z(\pi_1(A, x_0))) \).

Theorem 5. Let \(A \) be a connected aspherical polyhedron. Then the inclusion \(i : A \to X \) satisfies \(i_*(\pi_1(A, x_0)) \subset Z(\pi_1(X, x_0)) \) if and only if \(G(X, A, x_0) = \pi_1(X, x_0) \).

Proof. By Theorem 3, we have \(G(X, A, x_0) = Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0)) \). Since \(i_*(\pi_1(A, x_0)) \subset Z(\pi_1(X, x_0)) \), we have \(G(X, A, x_0) = \pi_1(X, x_0) \).

Conversely, if \(G(X, A, x_0) = \pi_1(X, x_0) \), then \(i_*(\pi_1(A, x_0)) \) is contained in \(Z(\pi_1(X, x_0)) \).

Jiang [\(J_2 \)] showed that \(J(X, f(x_0)) \subset J(f, x_0) = \{ g \in \pi_1(X, f(x_0)) : \text{there exists a cyclic homotopy } H : f \simeq f \text{ such that } [H(x_0, \cdot)] = g \} \) In the following theorem, we show that \(J(X, f(x_0)) \subset G(X, f(X), f(x_0)) \subset J(f, x_0) \).

Theorem 6. Let \(f : X \to X \) be a self-map and \(y_0 = f(x_0) \). Then \(G(X, f(X), y_0) \subset J(f, x_0) \), where \(J(f, x_0) \) denotes the Jiang subgroup of \(\pi_1(X, y_0) \) [\(J_2 \), Br]. In particular, if \(f^2 = f \), then \(G(X, f(X), y_0) = J(f, y_0) \), where \(y_0 \in f(X) \).

Proof. Let \(\alpha \) be an element of \(G(X, f(X), y_0) \). Then there exists an affiliated homotopy \(H : f(X) \times I \to X \) such that \(H(y, 0) = i(y) = H(y, 1) \) and \([H(y_0, \cdot)] = \alpha\). Define \(K = H(f_0 \times 1_I) : X \times I \to X \), where \(f_0 : X \to f(X) \) is a map such that \(f_0(x) = f(x) \). Then \(K(x, 0) = H(f_0(x), 0) = i(f_0(x)) = f(x) = K(x, 1) \). Since \(K(x_0, s) = H(f_0(x_0), s) = H(y_0, s) \), we have \(\alpha = [H(y_0, \cdot)] = [K(x_0, \cdot)] \). This implies \(\alpha \in J(f, x_0) \).

Suppose \(f^2 = f \). Let \(\alpha \) be an element of \(J(f, y_0) \). Then there exists a cyclic homotopy \(H : X \times I \to X \) such that \(H(x, 0) = f(x) = H(x, 1) \) and \([H(y_0, \cdot)] = \alpha\). Define \(K = H(i \times 1_I) : f(X) \times I \to X \). Then \(K(y, 0) = H(y, 0) = f(y) = f(f(x)) = f(x) = y = K(y, 1) \) and \(K(y_0, t) = H(y_0, t) \). Thus \(\alpha = [H(y_0, \cdot)] \in G(X, f(X), y_0) \).

Corollary 7. Let \(f \) and \(g \) be self-maps of \(X \) such that \(f^2 = f \), \(g^2 = g \) and \(f(X) = g(X) \). Then \(J(f, y_0) = J(g, y_0) \), where \(y_0 \in f(X) \).

In [\(Br \)], we know that if \(f \) is a self-map of \(X \) such that \(J(f, x_0) \)
Properties of the generalized evaluation subgroup of a topological pair

\[= \pi_1(X, x_0), \] then all the fixed point classes of \(f \) have the same index. If we use Theorem 6, we have the following:

Corollary 8. Let \(f \) be a self-map of \(X \) such that \(f^2 = f, x_0 \in \text{Fix}(f) \) and \(G(X,f(X),x_0) = \pi_1(X,x_0) \). Then all the fixed point classes of \(f \) have the same index.

Theorem 9. Let \(f_i \) \((i = 1, 2)\) be self-maps of \(X \) and \(f_1 \) is homotopic to \(f_2 \) by a homotopy \(K \) such that \(K(f_i^{-1}f_i \times 1) \) is single valued. Then \(G(X,f_1(X),f_1(x_0)) \) is isomorphic to \(G(X,f_2(X),f_2(x_0)) \).

Proof. Let \(K \) be the homotopy from \(f_1 \) to \(f_2 \) such that \(K(f_i^{-1}f_i \times 1_i) \) is single valued. Let \(P(t) = K(x_0, t) \), Then \(P \) is a path from \(f_1(x_0) \) to \(f_2(x_0) \). Since \(P_* : \pi_1(X,f_1(x_0)) \rightarrow \pi_1(X,f_2(x_0)) \) is an isomorphism, it is sufficient to show \(P_*(G(X,f_1(X),f_1(x_0))) \subset G(X,f_2(X),f_2(x_0)) \). Let \(\alpha \) be any element of \(G(X,f_1(X),f_1(x_0)) \). Then there exists an affiliated homotopy \(H : f_1(X) \times I \rightarrow X \) such that \(H(x,0) = H(x,1) = i(x) \) and \(\alpha = [H(f_1(x_0),0)] \). Define \(G : f_2(X) \times I \rightarrow X \) by

\[
G(f_2(x), t) = \begin{cases}
K(x, 1 - 3t), & 0 \leq t \leq 1/3 \\
H(f_1(x), 3t - 1), & 1/3 \leq t \leq 2/3 \\
K(x, 3t - 2), & 2/3 \leq t \leq 1
\end{cases}
\]

Then \(G \) is well defined and continuous. Since \(G(y,0) = y = G(y,1) \)

\[
G(f_2(x_0), t) = \begin{cases}
K(x_0, 1 - 3t), & 0 \leq t \leq 1/3 \\
H(f_1(x_0), 3t - 1), & 1/3 \leq t \leq 2/3 \\
K(x_0, 3t - 2), & 2/3 \leq t \leq 1
\end{cases}
\]

\[
= \begin{cases}
P(1 - 3t), & 0 \leq t \leq 1/3 \\
h(3t - 1), & 1/3 \leq t \leq 2/3 \\
P(3t - 2), & 2/3 \leq t \leq 1
\end{cases}
\]

\[
= (P \ast h \ast P)(t),
\]

thus \(P_*(\alpha) \) belongs to \(G(X,f_2(X),f_2(X),f_1(x_0)) \), where \(h(t) = H(f_1(x_0),t) \).

References

[Go]. Gottlieb, D. H. *A certain subgroup of the fundamental group*, Amer. J.
Moo Ha Woo

Math. 87(1965), 840-856.

[J]. Jiang, B. J. Lectures on Nielsen fixed point theory, Contemp. Math. 14

[WK]. Woo, M.H. and Kim, J. Certain subgroups of homotopy groups, J.

Korea University
Seoul 136-701, Korea