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AN EXAMPLE OF A PARTIALLY ORDERED
SHARKOVSKY SPACE

Jong Sook Bae anp Nak So Sunc

1. Introduction

Let f: R—>R be a continuous function on the real line R, and
denote the n—th iterate of f by f»: fl=f and fr=fof»1 for n>1. A
point z&R 1is a periodic point of f of peroid £>0 if f*(z) =z but
Si{z)#z for all 0<i<lk In the recent year the following question
has aroused interest: If f has a point of period % must f also have
points of other periods m#%k? The obvious answer would seem to be
“no”: why should there be any connection between points of period
# and points of period m? Yet a little thought will show that there
should be at least some results along these lines. For instance, if a
continuous function f has a periodic point of period £>>1, then it
must also have a fixed point, by the Intermediate Theorem. Also the
question has an intriguing answer which was found by ths Russian
mathematician Sharkovky [6] in 1964.

Treorem 1. (Sharkovsky’s theorem). Order the positive integers in
a sequence as follows (we will call this sequence Sharkovsky's sequence):
3,57 ..,232527,...,223,225,22.7, ..., 28,22 2 1.

If a continuous function f: R——>R has a point of period k, then f
has points of all periods which follow k in the sequence.

Sharkovsky’s original proof of Theorem 1 is quite complicated, even
in the some what improved English version given by Stefan [8] in 1977.
Clearly the periodic behavior of a function with points of all periods
is extremely complex. In fact, considering the periodic behavior of
physical and biological systems which can be modeled using such func-
tions, Lie and Yorke [3] in 1975 called such behavior “chaos”, and
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titled their paper “Period three implies chaos”. But the efficient method
of proof was found by Straffin, Jr., [9] in 1978, who used directed
graphs to present information about the periodic point of f. There
also exist some proofs of partial versions of Theorem 1 which were
obtained by western mathematicians not yet aware of Sharkovsky’s
result (see, e.g., [1] and [3]).

Consider a (linearly) ordered set L with more than one point. We
say that L is a linear continuum if

(1) L has the least upper bound property (or, equivalently, the

greatest lower bound property),

(2) L is order dense, i.e., if z<{y, then there exists z so that

<2<y,
and give L the order topology [4, page 84]. (Note that L is not
a “continuum”, which the topologist usually defines as a compact
connected spaces, as L need not be compact). The real line and
intervals of the real line are examples of linear continua in the order
topology. But there are many others, among them the long line and
the unit square in the dictionary order.

In 1985, Schirmer [5] extended Sharkovsky’s theorem to all linear
continua. Before introducing Schirmer’s theorem, let us define a Shar-
kovsky space. A topological space X is a Sharkovsky space if Theorem
1 (with R replaced by X) is true, that is,if any continuous function
f: X——X has a point of period %, then f has points of all periods
which follow % in Sharkovsky’s sequence. Schirmer [5] proved the
following theorem which is an extension of Sharkovsky’'s theorem.

THeorem 2 (Schirmer’s theorem). An ordered set in the order
topology is a Sharkouvsky space if and only if it is a linear continuum.

The proof of Schirmer’s theorem is modeled on the proof of the
Sharkovsky’s theorem in [9] and [2], and apart from an inspection
of the arguments in [9] and [2] nothing is needed but a more careful
proof of three lemmas (Lemma 2.2,2.3 and 2.4 in [5]).

We now look at partially ordered spaces in the context of Sharko-
vsky spaces. A partially ordered topological space X consists of a set
with a partial order < and a topology which has a subbasis for its
closed sets consisting of the sets
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L(a)={zeX|z<4a},

M(a)={zeX|a<La}
for all aeX ([10], page 148). Note that this topology equals to the
order topology if the partial order is in fact a linear one.

Also in his paper [5], Schirmer proved that a partially ordered
space which is dentrite is a Sharkovsky space if and only if it is a
linear continuum. However he asked in his paper whether or not any
partially ordered topological space is a Sharkovsky space if and only
if it is a linear continuum. But the following simple example shows
that the answer is negative. It is trivial to construct examples of
partially ordered Sharkovsky spaces which are not linear continua. Let
(L, <) be a linear continuum and let €L be any point other than
the smallest or largest points of L. Define a partial order < on L as
follows: z<y if and only if 2<y<z or 2<y<iz. Then (L, <) is a
partially ordered topological space which is not a linear continuum.
On the other hand, < and < induce the same topology on L, so
(L, £) is a Sharkovsky space.

The preceeding example shows that every linear continuum is homeo-
morphic to a partially ordered topological space which is not a linear
continuum. Therefore Schirmer’s question may be changed as follows;
Is any partially ordered topological space a Sharkovsky space if and
only if it is homeomorphic to a linear continuum ?

2. Example

Let Q be the first uncountable ordinal. Let X be a linearly ordered
set from [0, Q] by replacing between each ordinal « and its successor
a-+1 a copy of the unit interval I=(0,1) and let Y be a closed interval
[—1, 1] of the real line. Then X and Y are linear continua in the
order topology. It is well-known [7] that X is connected and compact, but
it is not path connected, for no path can join from Q to any other point.
But [0, Q)=X\{Q} is path connected. Now we construct a partially
ordered set. Let Z be the union of X and Y attached ) to 0, that
is, Z=XUY/Q~0. For simplicity we will dennte ) or 0 instead of
the class {2} ={0} by thinking that Q and O are the same point.
Give a partial order on Z as follows: For z,y&Z, z<y provided that
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z<vy holds when z,y=X or z,y€¢Y, and y>0 whenever z&X and
y&€Y. Note that X and Y have subspace topologies which are same
as original order topologies of themselves, that is, as subspaces of Z,
X and Y are linear continua. At this point, we want to prove that
the space Z is a Sharkovsky space which is not homeomorphic to any
linear continuum.

Treorem. The space Z defined as above is a Sharkovsky space, which
is not homeorphic any linear continuum.

Fraof. Since Z-{0} has three connected components, it is clear that
Z is not homeomorphic to any linear continuum. In crder to prove
that Z is a Sharkovsky space, suppose that a continuous function £ :
Z—->Z has a periodic point of period £>0. Let us consider the fol-
lowing cases.

Case 1. If FIOEX\{Q} then f(Z)c<X, since X and Y are path
connected but any point in X other than  can not be joined to Q
by a path. Hence all periodic points must lie in X. Since X is a
lirear continuum as a subspace of Z and (X)X, £ has points of all
periods which follow & in Sharkovsky’s sequence by Schirmer’s theorem.

Case 2. i fFIQVeY\{Q}, then f(Z)TY by the same reason as in
Case 1. By the same way as in Case i, we can show that f has
points of all periods which follow £ in Sharkovsky’s sequence.

Case 3. Let j{{1)=0. Then f(Y)<Y since aiso Y is path con-
nected but any point in X\{Q} can not be joined to ) by a path.
If F{IX;cY, then F(Z)CY, so that we have the same conclusion of
Case 2. Suppose that fF(X)Z Y. Then we have f(X)cX. Let acZ
be any periodic point of 7 of order k. Then the orbit {a, fla), ...,
FF1{a)} of @ must contained in either X or ¥. Since f(X) <X and f(Y)
<Y, and since X and Y are linear continua (as subspaces of Z) f
has points of all periods which follow % in Sharkovsky's sequence.

Hence the procf of theorem is completed.

Remark. In 5], Schirmer also proved that a linear continuum I
in the order topology which contains an arc is a Sharkovsky space
for which Sharkovsky’s sequence is sharp in the sense that no implica-
tinns from right to left are possible. Note that since Z contains an arc,
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Z is also a Sharkovsky space for which Sharkovsky’s sequence is sharp.
Also Schirmer asked whether or not the assumption that L contains an
arc can be omited.
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