HAUSDORFF φ -STRONG UNIQUENESS

SUNG HO PARK

Let M be a closed subspace of a Banach space X. An element m_0 in M is called a best approximation to an element x in X if

$$||x-m_0|| = \inf_{m \in M} ||x-m||.$$

 $||x-m_0||=\inf_{m\in M}||x-m||.$ Let φ be astrictly increasing function from R^+ into R^+ with $\varphi(0)=0$. $P_M(x)$ is Hausdorff φ -strongly unique if there exists a positive number $\lambda = \lambda(x, M)$ such that, for all m in M,

$$\varphi(||x-m||) \geq \varphi(d(x,M)) + \lambda \varphi(d(m,P_M(x))).$$

 P_M is uniform Hausdorff φ -strongly unique if there exists a positive number $\lambda = \lambda(M)$ such that, for all x in X and all m in M,

$$\varphi(\|x-m\|) \ge \varphi(d(x,M)) + \lambda \varphi(d(m,P_M(x))).$$

When M is Chebyshev, (uniform) Hausdorff φ -strong uniqueness is (uniform) φ -strong uniqueness.

It is known [3] that if M is a Haar subspace of C(T), the space of continuous real-valued functions of a compact Hausdorff space T with the supremum norm, then for every x in C(T) there exists a strongly unique best approximation in M. Also it is well known that in a Hilbert space, every best approximation is an φ -strongly unique best approximation with $\varphi(s) = s^2$ and $\gamma = 1$. On the other hand, it is known that a strongly unique best approximation need not exists for every x in X when X is smooth.

Let M be a proximinal subspace of a Banach space X such that dim $X \ge 2$.

Remarks. 1) R. Smarzewski [7] defined φ -strong uniqueness on a linear closed subspace M of the real Banach space X when $P_M(x)$ is a singleton. But we defined Hausdorff φ -strong uniqueness when $P_M(x)$ is a set.

Received October 30, 1989.

Revised January 30, 1990.

Supported by MOE Basic Science Research Institute.

2) When $\varphi(s) = s$, (Hausdorff, uniform Hausdorff) φ -strong uniqueness is equivalent to (Hausdorff, uniform Hausdorff) strong uniqueness.

Now we want to prove that (uniform) Hausdorff φ -strong uniqueness is preserved under the formation of quotient spaces.

Lemma 1. Let $P_M(x)$ be Hausdorff φ -strongly unique and N a closed subspace of M. Let $Q: X \longrightarrow X/N$ denote the quotient mapping. Then $P_{Q(M)}(Q(X))$ is the closure of $Q(P_M(x))$ in X/N.

Proof. ||Q(x)+Q(M)||=||x+M||, so $Q(P_M(x)) \subset P_{Q(M)}(Q(x))$. Since $P_{Q(M)}(Q(x))$ is closed, it only remains to prove that every element of this set is in the closure of $Q(P_M(x))$. Atter translation we can suppose hat the given element is zero. So we may assume that $0 \in P_{Q(M)}(Q(x))$, that is, ||x+M|| = ||x+N|| and we must find elements in N arbitrary close to $P_M(x)$. Let $\{n_k\}$ be a sequence in N such that $||x-n_k|| \longrightarrow d(x,M) = ||x+M||$. Then

 $\varphi^{-1}(\varphi(d(x,M)) + \lambda \varphi(d(0,P_M(x-n_k))) \leq ||x-n_k|| \longrightarrow d(x,M).$ Choose $m \in P_M(x)$ and note that

$$\varphi^{-1}(\varphi(d(x,M)) + \lambda \varphi(d(0,P_M(x-m))) = ||x+M||.$$

Since φ^{-1} is also strictly increasing,

 $d(0, P_M(x-n_k)) \longrightarrow 0$, that is, $d(n_k, P_M(x)) \longrightarrow 0$, as required.

Remark. [3] The assertion of the above Lemma is no longer true if we assume M to be only a proximal subspace of X, as the following example shows. In $X=l_1$,

$$M = \{x \in X : x_1 + \sum_{n=2}^{\infty} \left(1 - \frac{1}{n}\right) x_n = 0\}$$

$$N = \{x \in M : \sum_{n=2}^{\infty} x_n = 0\}$$

and let $x \in l_1$ be given by $2x_1 = x_2 = 1$ and $x_n = 0$ for $n \ge 3$. It is not difficult to verify that ||x+M|| = ||x+N|| = 1, and so $0 \in P_{Q(M)}(Q(x))$, where as $d(0, Q(P_M(x)) = 1$.

By the above lemma we obtain the following proposition.

Corollary 2. Let P_M be uniform Hausdorff φ -strongly unique and

N a closed subspace of M. Let $Q: X \longrightarrow X/N$ denote the quotient mapping. Then, for any x in $X, P_{Q(M)}(Q(x))$ is the closure (in X/N) of $Q(P_M(x))$.

From Lemma 1, we get the following proposition.

Proposition 3. Let $P_M(x)$ be Hausdorff φ -strongly unique and N a closed subspace of M. Then $P_{M/N}(x+N)$ is Hausdorff φ -strongly unique.

Proof. Since $P_M(x)$ is Hausdorff φ -strongly unique, there exists $\lambda > 0$ such that

$$\varphi(\|x-m\|) \ge \varphi(d(x,M)) + \lambda \varphi(d(m,P_M(x)))$$

for all m in M. Then

$$\begin{split} \|Q(x)\| &= \|x+N\| = \inf_{n \in \mathbb{N}} \|x+n\| \\ &\geq \inf_{n \in \mathbb{N}} \varphi^{-1} (\lambda \varphi(d(0, P_M(x+n))) + \varphi(d(x, M))) \\ &= \varphi^{-1} (\inf_{n \in \mathbb{N}} (\lambda \varphi(d(0, P_M(x+n))) + \varphi(d(x, M))) \\ &= \varphi^{-1} (\lambda \varphi(\inf\{\|m+n\| : m \in P_M(x), n \in \mathbb{N}\}) + \varphi(\|x+M\|)) \\ &= \varphi^{-1} (\lambda \varphi(d(0, Q(P_M(x)))) + \varphi(\|x+M\|)) \end{split}$$

Note that ||x+M|| = ||Q(x)+Q(M)||. By Lemma 1,

$$d(0, Q(P_M(x))) = d(0, P_{Q(M)}(Q(x))).$$

Thus we have, for any x in X,

$$\varphi(\|Q(x)\|) \ge \lambda \varphi(d(0, P_{Q(M)}(Q(x))) + \varphi(d(Q(x), Q(M))).$$

Hence $P_{M/N}(x+N)$ is Hausdorff φ -strongly unique.

Corollary 4. Let P_M be uniform Hausdorff φ -strongly unique and N a closed subspace of M. Then $P_{M/N}$ is uniform Hausdorff φ -strongly unique.

We recall that a Banach space X with dim $X \ge 2$ is said to be uniformly convex if the modulus of convexity $\delta_X = \delta_X(\varepsilon)$, $0 < \varepsilon \le 2$, of X defined by

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x - y\|}{2} : x, y \in X, \|x\| = \|y\| = 1, \|x - y\| = \varepsilon \right\}$$

satisfies the inequality $\delta_X(\varepsilon) > 0$ for every $\varepsilon \in (0, 2]$. Assume that $\varphi: \mathbf{R}^+ \longrightarrow \mathbf{R}^+$ be an increasing convex continuous function such that $\varphi(0) = 0$ and $\varphi(1) = 1$. We shall say that a uniformly convex space X

has modulus of convexity of the type φ if there is a constant K, $0 < K < \infty$, such that

(1)
$$\delta_X(\varepsilon) \geq K\varphi(\varepsilon), \ 0 \leq \varepsilon \leq 2.$$

The function φ is said to be submultiplicative if there is a constant $L, 0 < L < \infty$, such that the inequality

(2)
$$\varphi(ts) \leq L\varphi(t)\varphi(s)$$

holds for all positive t and s.

Theorem 5 [8]. Let M be a Chebyshev subspace of a uniformly convex space X having modulus of convexity δ_X of the type φ . Assume that φ is a submultiplicative function. Then the inequality

$$\varphi(\|x - P_{\boldsymbol{M}}(x)\|) \leq \varphi(\|x - P_{\boldsymbol{M}}(x)\|) - KL^{-1}\varphi(\|P_{\boldsymbol{M}}(x) - m\|)$$

holds for all $m \in M$, where K and L are in (1)-(2).

Corollary 6[8]. Let M be a Chebyshev subspace of L_p , 1 . Then

$$||x-P_M(x)||^q \le ||x-m||^q - C_p ||P_M(x) - m||^q$$

for all m in M, where $q = \max\{2, p\}$ and

(3)
$$C_{p} = \begin{cases} \frac{p-1}{8} & \text{, if } 1$$

that is, P_M is uniform φ -strongly unique with $\varphi(s) = s^q$, where $q = \max\{2, p\}$.

Recall that H_p , 1 , is the Banach space of all functions <math>x analytic in the unit disc |z| < 1 of the complex plane and such that

$$||x|| = ||x||_p = \lim_{r \to 1^-} \left[\frac{1}{2\pi} \int_0^{2\pi} |x(re^{i\theta})|^p d\theta \right]^{1/p} < \infty.$$

Corollary 7[8]. Let M be a subspace of H^p , $1 . If <math>m_0 \in M$ is a best approximation in M to an element x, then

$$||x-m_0||^q \le ||x-m||^q - C_p ||m_0-m||^q$$

for all y in M, where $q = \max\{2, p\}$ and C_p is as in (3).

DDFINITION 8. If, for any x, y in a subset E of X, $H(P_M(x), P_M(y)) \leq \varphi(\lambda ||x-y||),$

then P_M is said to be φ -Lipschitz continuous relative to E.

Lemma 9. Let φ be a strictly increasing C^1 function on \mathbb{R}^+ . Then φ is Lipschitz continuous relative to [0, r] for any r>0.

Proof. By Mean Value Theorem, for u_i with $0 \le u_i \le r$ and $u_1 < u_2$, $|\varphi(u_1) - \varphi(u_2)| = |\varphi'(\xi)| |u_1 - u_2|$

for some $\xi \in (u_1, u_2)$. Since $\varphi \in C^1$, there exists $u_0 \in [0, r]$ such that $C_r = \sup_{\alpha \in C^2} |\varphi'(u)| = |\varphi'(u_0)|$.

Thus for any u_i with $0 \le u_1 < u_2 \le r$,

$$|\varphi(u_1)-\varphi(u_2)| \leq C_r |u_1-u_2|.$$

THEOREM 10. Let φ be as in Lemma 9 and $\varphi(0) = 0$. If P_M is uniform Hausdorff φ -strongly unique, then P_M is φ^{-1} -Lipschitz continuous relative to $B_r(0)$ for any r > 0, where $B_r(0) = \{x : ||x|| \le r\}$.

Proof. Suppose that there is $\lambda = \lambda(M) > 0$ such that

$$\varphi(d(x, P_{M}(x))) \leq \varphi(||x-m||) - \lambda \varphi(d(m, P_{M}(x)))$$

for any $x \in X$ and $m \in M$. Choose any r > 0.

Let $x, y \in B_r(0)$ be fixed, $a \in P_M(x)$, and $b \in P_M(y)$.

Then

$$\lambda \varphi(d(b, P_M(x)) \leq \varphi(||x-b||) - \varphi(||x-a||)$$

and

$$\lambda \varphi(d(a, P_M(y)) \leq \varphi(||y-a||) - \varphi(||y-b||),$$

or,

$$\varphi(d(b, P_M(x))) \le \lambda^{-1} \{ \varphi(||x-b|| - \varphi(||x-a||)) \}$$

and

$$\varphi(d(a, P_M(y))) \leq \lambda^{-1} \{ \varphi(\|y-a\|-\varphi(\|y-b\|)) \}.$$

Thus

$$\varphi(H(P_M(x), P_M(y))) = \max_{a \in P_M(x)} \{\sup_{a \in P_M(x)} \varphi((d(a, P_M(y))), \sup_{b \in P_M(y)} \varphi(d(b, P_M(x)))\}$$

$$\leq \sup_{\substack{a \in P_{M}(x) \\ a \in P_{M}(x)}} \{ \varphi(d(a, P_{M}(y))) + \varphi(d(b, P_{M}(x))) \}$$

$$\leq \sup_{\substack{a \in P_M(x) \\ b \in P_M(y)}} \lambda^{-1} \{ \varphi(\|y-a\|) - \varphi(\|y-b\|) + \varphi(\|x-b\|) - \varphi(\|x-a\|) \}$$

$$\leq 2\lambda^{-1}C_r||x-y||,$$

where $C_r = \sup_{0 \le u \le r} |\varphi'(u)|$. Since $x, y \in B_r(0)$ were arbitrary, for any $x, y \in B_r(0)$,

$$H(P_M(x), P_M(y)) \le \varphi^{-1}(2\lambda^{-1}C_r||x-y||).$$

Remark In Theorem 10, the convexity of φ didn't require, but the convexity of φ required in Theorem 5.

By Theorem 5, Corollary 6, Corollary 7 and Theorem 10, we obtained the following corollaries.

Corollary 11 [8]. Let M be a Chebyshev subspace of a uniformly convex X having modulus of convexity δ_X of the type φ . Assume that φ is a submultiplicative function. Then P_M is φ^{-1} -Lipschitz continuous relative to $B_r(0)$ for all r>0.

Corollary 12 [8]. Let M be a Chebyshev subspace of L_p , $1 . Then <math>P_M$ is q^{-1} -Lipschitz continuous relative to $B_r(0)$ for all r > 0, where $q = \max\{2, p\}$.

COROLLARY 13 [8]. Let M be a proximinal subspace of H^p , 1 . $Then <math>P_M$ is q^{-1} -Lipschitz continuous relative to $B_r(0)$ for all r > 0, where $q = \max\{2, p\}$.

Now we get the property that if P_M is uniform φ -strongly unique, then P_M is φ^{-1} -Lipschitz continuous relative to $B_r(0)$ for all r>0. But we are interesting in the following question: If P_M is uniform hausdorff φ -strongly unique, is P_M Lipschitz continuous?

THEOREM 14 [1, 6] The following statements are equivalent:

- (i) P_M is Lipschitz continuous;
- (ii) P_M is uniformly continuous.

By the previous Theorem, P_M is φ -Lipschitz continuous relative to X if and only if P_M is Lipschitz continuous.

Theorem 15. Suppose φ is a strictly increasing continuous function on \mathbf{R}^+ , $\varphi(0) = 0$ and there is $\gamma > 0$ such that

(4) $\varphi(a+b) \leq \varphi(a) + \gamma \varphi_1(b)$, $a \geq 0$, $b \geq 0$ where φ_1 is a function, $\varphi_1(0) = 0$ and $\varphi_1(s) \leq \varphi(s)$ for all s in \mathbb{R}^+ . If P_M is uniform Hausdorff φ -strongly unique, then P_M is Lipschitz continuous.

Proof. Since P_M is uniform Hausdorff φ -strongly unique, there is

 $\lambda > 0$ such that for each $x \in X$,

$$\varphi(\|x-m\|) \ge \varphi(d(x,M)) + \lambda \varphi(d(m,P_M(x))), m \in M.$$

Let $x_1, x_2 \in X$. For any $m_2 \in P_M(x_2)$, we have

$$\lambda \varphi(d(m_2, P_M(x_1)) \leq \varphi(||x_1 - m_2||) - \varphi(d(x_1, M))
\leq \varphi(||x_1 - x_2|| + ||x_2 - m_2||) - \varphi(dx_1, M))
= \varphi(||x_1 - x_2|| + d(x_2, M) - d(x_1, M) + d(x_1, M)) - \varphi(d(x_1, M))
\leq \varphi(2||x_1 - x_2|| + d(x_1, M)) - \varphi(d(x_1, M)).$$

If $d(x_1, M) \le 2||x_1 - x_2||$, then

(5)
$$\lambda \varphi(d(m_2, P_M(x_1))) \leq \varphi(4||x_1 - x_2||).$$

If
$$d(x_1, M) > 2||x_1 - x_2||$$
, by (4), we get $\lambda \varphi(d(m_2, P_M(x_1)) \leq \varphi(d(x_1, M)) + \gamma \varphi_1(2||x_1 - x_2||) - \varphi(d(x_1, M)) \leq \gamma \varphi_1(2||x_1 - x_2||)$.

Thus

$$\begin{split} \lambda \varphi(d(m_2, P_M(x_1)) &\leq \max\{\varphi(4||x_1 - x_2||), \gamma \varphi(2||x_1 - x_2||)\}\\ &\leq \max\{\varphi(2||x_1 - x_2|| + \gamma \varphi_1(2||x_1 - x_2||), \ \gamma \varphi_1(2||x_1 - x_2||)\}\\ &\leq (1 + \gamma) \varphi(2||x_1 - x_2||). \end{split}$$

Similarly, for any $m_1 \in P_M(x_1)$,

$$\lambda \varphi(d(m_1, P_M(x_2)) \leq (1+\gamma)\varphi(2||x_1-x_2||).$$

Hence $H(P_M(x_1), P_M(x_2)) \leq \varphi^{-1}(\lambda^{-1}(1+\gamma)\varphi(2||x_1-x_2||)$. Therefore P_M is uniformly continuous. By Theorem 14, P_M is Lipschitz continuous.

Corollary 16 [5]. If P_M is uniform Hausdorff strongly unique, i.e., $\varphi(s) = s$, then P_M is Lipschitz continuous.

Proof. Note that $\varphi(a+b) = \varphi(a) + \varphi(b)$. It follows from Theorem 15.

References

- 1. F. Deutsch, W. Li, and S.H. Park, Characterization of continuous and Lipschitz continuous metric selections in normed linear spaces, J. Approx. Theory 58 (1989), 297-314.
- 2. Pei-Kee Lin, Strongly unique best approximation in uniformly convex Banach spaces, J. Approx. Theory 56(1989), 101-107.
- 3. J.T. Mena, R. Paya, A. Rodriguez and D.T. Yost, Absolutely proximinal subspaces of Banach spaces, J. Approx. Theory (To appear).
- D. J. Newman and H. S. Shapiro, Some theorems on Chebyshev approximation theory, Duke Math. J. 30(1963), 673-681.
- 5. S.H. Park, Uniform Hausdorff strong uniqueness, J. Approx. Theory 58

Sung Ho Park

(1989), 78-89.

- 6. S.H. Park, Lipschity continuous metric projections and selections, Bull. Korean Mach. Soc. Vol. 26, No. 2 (1989), 191-201.
- 7. R. Smarzewski, Strong unique best approximation in Banach spaces, J. Approx Theory 47(1986), 184-194.
- 8. R. Smarzewski Strongly unique best approximation in Banach spaces, II, J. Approx. Theory 51(1987), 202-217.
- 9. B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. and Appl. 121(1897), 10-21.
- 10. R. Smarzewski, Strong unicity of order 2 in C(T), J. Approx. Theory 56(1989), 306-315.

Sogang University Seoul 121-742, Korea