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HAUSDORFF ¢-STRONG UNIQUENESS

Sune Ho Park

Let M be a closed subspace of a Banach space X. An element m, in
M is called a best approximation to an element r in X if
IIx—moll:igflllz—mll-

Let ¢ be astrictly increasing function from R* into R* with ¢(0) =0.
Py (z) is Hausdorff ¢-strongly unique if there exists a positive number
A=2A(z, M) such that, for all = in M,
o(lz—mll) Zo(d (2, M)) +2p(d (m, Py (z))).
Py is uniform Hausdorff ¢-strongly unique if there exists a positive
number A=A(M) such that, for all z in X and all m in M,
o(llz—ml) 2o (d (z, M)) +Ap(d (m, Py (2))).
When M is Chebyshev, (uniform) Hausdorff ¢-strong uniqueness is
(uniform) ¢-strong uniqueness.

It is known [3] that if M is a Haar subspace of C(T'), the space
of continuous real-valued functions of a compact Hausdorff space T
with the supremum norm, then for every z in C(T) there exists a
strongly unique best approximation in M. Also it is well known that
in a Hilbert space, every best approximation is an g-strongly unique
best approximation with ¢(s) =s? and y=1. On the other hand, it is
known that a strongly unique best approximation need not exists for
every r in X when X is smooth.

Let M be a proximinal subspace of a Banach space X such that dim
X=2.

Remarks. 1) R. Smarzewski [7] defined ¢-strong uniqueness on a
linear closed subspace M of the real Banach space X when P, (z) is
a singleton. But we defined Hausdorff ¢-strong uniqueness when P, (z)
is a set.
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2) When ¢(s)=s, (Hausdorff, uniform Hausdorff) ¢-strong uni-
queness is equivalent to (Hausdorff, uniform Hausdorff) strong uni-
queness.

Now we want to prove that (uniform) Hausdorff ¢—strong uniqueness
is preserved under the formation of quotient spaces.

Lemma 1. Let Py(x) be Hausdorff ¢~strongly unique and N a closed
subspace of M. Let Q:X——>X/N denote the quotient mapping. Then
Poan QX)) is the closure of Q(Py(2)) in X/N.

Proof. [|Q(2) +Q (M) ||=llz+M|, so Q(Py(2)) =Pyu R(z)).
Since Py, (Q(x)) is closed, it only remains to prove that every
element of this set is in the closure of Q(P,(z)). Atter translation
we can suppose hat the given element is zero. So we may assume that
0€ Py (Q(x)), that is, [Jx+ M| =|lz+N| and we must find elements
in N arbitrary close to Py (x). Let {n;) be a sequence in N such that
|z —mll——d (z, M) =||z+M]|.

Then
o p(d (x, M) +2p(d (0, Py(x—mp))) < llz—mll—d (z, M).
Choose m& Py (x) and note that
o Hp(d(x, M)) +20(d(0, Py (z—m))) =|lz+ M|
Since ¢! is also strictly increasing,
d(0, Py(z—m))—0, that is, d(m, Py (z))—>0, as
required.

Remark. [3] The assertion of the above Lemma is no longer true
if weassume M to be only a proximnal subspace of X, as the follojw-
ing example shows. In X=1,,

— : ;- 1y
M=(zeX : o+ 3 (1) z,=0)
N={(zeM : 3 2,=0)

n=2

and let €/, be given by 2z;=z,=1 and z,=0 for »=3. It is not
difficult to verify that ||z+ M| =||z+N||=1, and so 0Py (Q(2)),
where as d(0, Q(Py(z)) =1.

By the above lemma we obtain the following proposition.

CoroLLARY 2.  Let Py be uniform Hausdorff ¢-strongly unique and
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N a closed subspace of M. Let Q: X——X/N denote the gquotient
mapping. Then, for any z in X, Py (Q(x)) is the closure (in X/N)
of Q(Py(x)).

From Lemma 1, we get the following proposition.

ProrposiTioNn 3. Let Py (x) be Hausdorff ¢-strongly unique and N a
closed subspace of M. Then Py,n(xz+N) is Hausdorff p-strongly unique.

Proof. Since Pp(z) is Hausdorff ¢-strongly unique, there exists
A>0 such that
p(lz—ml|)) Z¢(d(z, M)) +Ap(d(m, Py(zx)))
for all m in M. Then

1Q@)lI=lla=+Nl=inf |+
Zinf gt (A (d (0, Pae(z+m)) +0(d (2, M)

-—go‘l(mf(lgp(d(o Py(z+n)) +o(d(z, M)))

_w"l(/?@(mf{llm+nll : mEPy(x), nEN}) +o(||z+Ml))

=¢ 1 (Ap(d (0, Q(Py(x)))) +o(lz+M|))
Note that ||z+M||=||Q(z) +Q(M)]|l. By Lemma 1,

d (0, Q(Pp(2))) =d (0, Poar, Q(2))).
Thus we have, for any z in X,
o (IQ@) ) 249 (d(0, Poan Q(2))) +o(d (@ (), Q(M))).

Hence Py, y(z+N) is Hausdorff ¢-strongly unique.

CoroLLARY 4. Let Py be uniform Hausdorff ¢-strongly unique and
N a closed subspace of M. Then Py is uniform Hausdorff o-strongly
unique.

We recall that a Banach space X with dim X=2 is said to be
uniformly convex if the modulus of convexity dy=0x(s), 0<e<£2, of
X defined by

ox@ =inf{1-12220 2 4 ye x, ol =llyli =1, lle—sl=]
satisfies the inequality dy (¢)>0 for every e=(0,2]. Assume that ¢:
R*——R* be an increasing convex continuous function such that
¢(0) =0 and ¢(1) =1. We shall say that a uniformly convex space X
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has modulus of convexity of the type ¢ if there is a constant K, 0<
K< oo, such that

@ 0x(e) =2Kp(e), 0<e<2
The function ¢ is said to be submultiplicative if there is a constant
L,0<L< oo, such that the inequality

2 ¢(ts) = Lo (Do ()

holds for all positive ¢ and s.

Turorem 5 [8]. Let M be a Chebyshev subspace of a uniformly conver
space X having modulus of convexity dx of the type ¢. Assume that ¢
is a submultiplicative function. Then the inequality

pllz—Pu @) Splllz—Py(2) 1)) =KL o (|| Py (x) —mll)
holds for all meM, where K and L are in (1)-(2).

CoroLLarY 6[8]. Let M be a Chebyshev subspace of L, 1< p<oo.
Then
lz—Pp () |0 |z —m||a—C || Pps (z) —ml|e
SJor all m in M, where g=max (2, p} and

ﬁg—l L if 1<p=<2
(3) Cp:
# , if 2<p<o0,

that is, Py is uniform ¢-strongly unique with ¢(s) =59, where g=max
{2, p}.

Recall that H, 1< p<(oo, is the Banach space of all functions z
analytic in the unit disc |2]|<{1 of the complex plane and such that

27 X 1
lall= il =lim| L[}z ey | a0 "* <oo.

CoroLLary 7[8]. Let M be a subspace of H?,1<p<co. If myeM
is a best approximation in M to an element x, then
llz—moll1< |z —ml|2—C pllmg—ml|e

Sor all y in M, where q=max {2, p} and C, is as in (3).

Dormvirion 8. If, for any z,y in a subset E of X,

HPu(@), Pre() <o @llz—yl),
then P, is said to be ¢-Lipschitz continuous relative to E.
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Lemma 9. Let ¢ be a strictly increasing C! function on R*. Then ¢
is Lipschitz continuous relative to [0,r] for any r>0.

Proof. By Mean Value Theorem, for u; with 0<u;<r and w;<lus,
lo @) =@ (ug) | = ¢ (&) | luy—uy|
for some &€ (uy, u,). Since p=Cl, there exists uo< [0, 7] such that
Cr= sup ¢/ () | = ¢/ (uo) |-
Thus for any #; with O§u1<7u2§r,
(@ (u1) — @ (up) | £Cplug—us|.

Tueorem 10. Let ¢ be as in Lemma 9 and ¢(0) =0. If Py is uniform
Hausdorff ¢—strongly unique, then Py is ¢~ 1~Lipschitz continuous relative
to B,(0) for any r>>0, where B,(0)={z: ||z||<r]}.

Proof. Suppose that there is A=A(M) >0 such that
¢(d(z, Py (2))) g (lle—ml) —Ap(d (m, Py (2)))
for any z€X and meM. Choose any r>0.
Let z, y&B,(0) be fixed, ac Py (z), and d€ Py (»).

Then
Ap(d (b, Py (2)) <o (llz—blD) —o(Clz—all)
and
Ap(d(a, Py () S (ly—al) —o(y—5l),
or,
e(d (b, Py(2))) =47 Ho(lz—bll—o(lz—al)}
and
o(d(a, Py(0)) 22 Ho(ly—all—o(ly—8lD}.
Thus

¢ (H(Py (), Par(3))) =max {sup ¢ ((d(a, PM(y))),SuP §0(d(b Py (x)))}

EPy(x) a€Ppy(x

< sup {p(d(a, PM(y)))+(p(d(b Pu(2)))}

P St

éaillgp( /}“1 {pdly—all) —o(ly—blD) +o(lz—bl) —p(|z—alD}
bePi ey

247G, [z —yl],

whrer C,=sup|¢’ («) |. Since z, yEB,(0) were arbitrary, for any z, y
0Susr

€B,(0),
HPu(2), Pu(9)) ¢t @QIVIC{lz—» D).
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Remark In Theorem 10, the convexity of ¢ didn’t require, but the
convexity of ¢ required in Theorem 5.

By Theorem 5, Corollary 6, Corollary 7 and Theorem 10, we
obtained the following corollaries.

CoroLLarY 11 [8]. Let M be a Chebyshev subspace of a uniformly
convex X having modulus of convexity Ox of the type ¢. Assume that
¢ is a submultiplicative function. Then P is ¢ 1-Lipschitz continuous
relative to B,.(0) for all r>0.

CoroLLARY 12 [8]. Let M be a Chebyshev subspace of Ly, 1<p<loo.
Then Py is g -Lipschitz continuous relative to B,(0) for all r>0,
where g=max {2, p}.

CoroLLarY 13 [8]. Let M be a proximinal subspace of H?, 1< p<lco.
Then Py is g -Lipschitz continuous relative to B,(0) for all r>0,
where g=max {2, p}.

Now we get the property that if P, is uniform ¢-strongly unique,
then Py is ¢ '-Lipschitz continuous relative to B,(0) for all »>>0.
But we are interesting in the following question: If P, is uniform
hausdorff ¢-strongly unique, is P, Lipschitz continuous?

TueoreM 14 [1, 6] The following statements are equivalent:
(1) Py is Lipschitz continuous;
(i1) Py is uniformly continuous.

By the previous Theorem, P, is ¢-Lipschitz continuous relative to
X if and only if P, is Lipschitz continuous.

THEOREM 15.  Suppose ¢ is a strictly increasing continuous function on
R, ¢(0)=0 and there is y>>0 such that

4) plat+d) p(a) +70:(b), a=0, =0
where @1 is a function, ¢;(0) =0 and ¢,(s) Zp(s) for all s in R*. If
Py is uniform Hausdorlf ¢-strongly unique, then P, is Lipschitz
continuous.

Proof. Since Py is uniform Hausdorff p-strongly unique, there is
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2>>0 such that for each z€X,
¢ (lz—ml)) Zp(d (z, M)) +2p(d (m, Py (2))), meM.
Let z;, z,€X. For any m,&€ Py (z,), we have
Ap(d (my, Py (21)) S ¢ (|l2y—myl|) —p(d (21, M))
2o ley—zoll + |2y —myl) —p(dxy, M))
= (|lz;—z.l| +d (x5, M) —d(x;, M) +d (x, M)) —o(d (z1, M)
= Qllar—aall +d (21, M)) —¢(d (21, M)).
If d(z;, M) <2||z;—z3|, then
) Ap(d (mo, Py (1)) S (4|21 —,)]).
If d(xl’ M)>2“.Z‘1"“.1‘2”, bY (4)’ we get
Ap(d (my, Py (21)) S (d (21, M)) +790:12ll21— z2l|) —0 (d (24, M))
<7101 2lle1— o).
Thus
Ap(d (my, Py (21)) < max {p @llx;—z2ll), 702l 21— x2]) }
= max {p @llz1— zoll +701 Cllzy— 24l)), 701 Cllzi— 22l }
= A+Ne@llay—z).
Similarly, for any m;& Py (x,),
Ap(d (my, Py (x2)) < (1+7) 0 QCllzy — z,l)).
Hence H (P (x1), Pp(xy)) <o 1 (271 (1+7) e @lla;—z,ll). Therefore Py,
is uniformly continuous. By Theorem 14, P, is Lipschitz continuous.

CoroLLARY 16 [5]. If Py is uniform Hausdorff strongly unique,
i.e., ¢(s)=s, then Py is Lipschitz continuous.

Proof. Note that ¢ (a+5) =¢(a) +¢(4). It follows from Theorem 15.
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