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LINEAR ABSTRACT CAUCHY PROBLEM ASSOCIATED
WITH AN EXPONENTIALLY BOUNDED
C-SEMIGROUP IN A BANACH SPACE*

K1 Sik Ha*, Jar Heui Kiv* anp Jone Kyu Kmm*™

1. Introduction

The purpose of this paper is to consider the inhomogeneous initial
value problem

@ j"t—u ) =2u(t) +£(2)

u(Q)=x
in a Banach space X, where Z is the generator of an exponentially
bounded C-semigroup in X, f(¢) : [0, T)—X and € X. Davies-Pang[1]
showed the corresponding homogeneous equation, that is, the equation
with f(¢#) =0, has a unique solution depending continuously on the
initial value z€CD(Z) in the C~l-graph norm on CD(Z) when T=o0.

2. Preliminaries

We recall here definitions and characterizations for an exponentially
bounded C-semigroup given by Davies-Pang [1]. Besides [1], one
can refere to [2], [3],[4], [5] and [6] for an exponentially bounded
C-semigroup in a Banach space.

Let X be a Banach space and let C be an injective bounded linear
operator from X into itself with dense range R(C) in X. We say
that {S(z) |t=0} is an exponentially bounded C-semigroup in X if
{S(¢) |20} is a strongly continuous family of bounded linear operator
from X into itself satisfying

(ap SO =C,

(az) S@+s5)C=S)S(s) for ¢, 520,
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(az) there exists constants M=0 and a=0 such that ||S()|| < Me=
for t=0.

Letting s—0+ in (ay), we have S(H)C=CS®), SE)zeR(C) and
CIS@®)xz=S#)C 'z for z&R(C).

Let T'(#) be the closed linear operator defined by

@) TEx=C1S(t)z
for z&€D(T(¢)) ={z€X|S(#)z=R(C)}. Then R(C)cD(T(¢)) and

(b)) T z==x for z€X,

(by) T(t+s)xz=T () T(s)z for z& R(C?),

(bs) T(¢)x is continuous in ¢20 for z&R(C2).

Let 2>a. We define the bounded linear operator L, from X into
itself by

Lz Zj:e"“S (t) zdt

for z€X. The operator L; with 2>>a will be called the C-resolvent
of {S(¢)]t=0}. L, is injective and
A—L;C)z=(u—L,C)z
for r€X with CzeR(L) =R(L,) for A, y>>a. Therefore the closed
linear operator Z defined by
Zz=A~L;1C)x
for zeD(Z)={zeX|CxeR(Ly))}, is independent of i>a. The ope-
rator Z will be called the generator of {S(z) |{¢t=0} with ||S () ||< Me=.
We have
L7 Cz=CL; 'z and ZCz=CZz
for z&CD(Z). The generator Z is densely defined in X and § ®ze
D(z),

3) 7?75 O 2=ZS () 2=5(t) Zz
for z€D(Z). Furthermore T(t)z=D(Z),
4) —jTT(t)x:ZT(t)x:T(t) Zz

for xreCD(2).
We define the linear operator G by

zelizn—}(T(t)x—x)
for zeD(G)={xeR(C) ]lign%—(T(t)x——x) exists}. The operator G is
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also densely defined in X and G=Z. Furthermore C4D(Z) <D(G) and
Gz=Zz for z€C*D(2)

Here, C°=I,C*=CC*! and CYD(Z)={CtzeX|zeD(Z)} for k=
1,2, -

3. Abstract Cauchy problem

Throughout this section, let {S(z) |£=0} be an exponentially bounded
C-semigroup with [|S(¢)||<Me* in a Banach space X and let Z be its
generator. Let T'(z) =C~'§(¢) be the operator defined by (2) and
T< oo,

Dermition 1. A function » : [0, T)—>X is called a solution of (1)
on [0, T) if the following conditions (c;) —(c,) are satisfied:

(c1) = is continuous on [0, T),

(c2) u is continuously differentiable on [0, T),

(cs) u(®) eD(Z) for t= (0, T),

(cy) (1) is satisfied.

We give some properties of a solution of (1) on [0, T).

ProrosiTion 2.  Let f(t) ER(C) for t<[0, T) with Cife L0, T;
X). If wis a solution of (1) on [0, T) for z&CD(Z), then

®) sO=T@a+[ TE—5)f(s)ds
Sfor t=[0,T).
Proof. The X-valued function S(t—s)u(s) is differentiable for 0<s
<t and from (3)
@ -j—S(t—s)u(s) =—Z8(t— ) uls) +8 (t—s)—Z—u (s)
s ds
=—Z8(t—9)u(s) +S@—s) Zu(s) +8(¢t—s) f(5)
=S8(t—s)f(s).

Since f€ L' (0, T;X), S(t—s) f(s) is integrable and integrating (7) from
0 to ¢ yields

®) Cu(® =S() x—}—J;S (t—5) £(5) ds.

Since S(t—s)f(s) €L (0, T;X) and
CTIS(t—s5) f(s) =S(t—s5)C1f(s) & L1 (0, T:;X),
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it follows from (8) that
2 (8) =C1S (8) z +j;c-ls (t—5) f(s)ds

:T(t>x+j;T(t~s) £(s) ds.

ProrosiTion 3. Let f(t) €R(C) for t€[0, T) with C-f€L1(0, T;
X) and let u be a solution of (1) on [0, T) for x&C?D(Z). Put
©) v® =] TG—97()ds

for t&[0, T). Then
(1) v is continuously differentiable on (0, T),
(ii) v(t) €D(Z) for t= (0, T) and if [ is continuous on (0, T), Zv(f)

is continuous on (0, T).

Proof. Let z€C2D(Z). (1) From (6) and (9), v(t) =u(®) —T () z.
Thus v is continuous on [0, 7) and differentiable on (0, 7). From
(4) and Definition 1,

%v(t) =4 - —T(t)x

d
dt
-g—u &) —T @ Zz

is continuous in ¢t€ (0, T). Thus (i) follows.
(ii) From (4) and Definition 1,
v(t)=ut) —T )z D(Z)
for t=(0, T) and
Zv(t)=Zu(t) —ZT (t) x

= ) —
= dtu(t) f@&)—Tt)Zx
is continuous in z< (0, T).

Now we consider the existence of solutions of (1) on [0, 7).

Tueorem 4. Let f(t) ER(C) for t< [0, T) with C-If L' (0, T; X).
Let f be continuous on [0, T) and put
16) :J;T(t——s)f(s)ds
for t=[0, T).

— 160 —



Linear abstract Cauchy problem associated with an exponentially
bounded C-semigroup in a Banach space

(1) If v is continuously differentiable on (0, T) with v(t) €R(C) for
t€[0, T), then u defined by (6) is a unique solution of (1) on [0, T)
Sfor x=C2D(Z).

(i) If v(t) €C*D(Z) and Zv(s) is continuous in t< (0, T), then u
defined by (6) is a unique solution of (1) on[0, T) for z=C2D(Z).

Proof. Let x€C2D(Z). The uniqueness follows from Proposition 2.
(i) Since T(t—s)f(s) L' (0, T; X), v is continuous on [0, T) and
thus «(¢) =T () z+v(¢) is continuous in ¢+€[0, 7). From assumption
and (4),

d _ d d .
Wu(t) =— T(t)x+~——dt v (t)
_ d

is continuous in t&€(0, 7). Thus « is continuously differentiable on
(0, T). From the differentiability of v(¢) with v(#) €R(C), we have

10 TTE=Do® =1 @+ —v@) —+[ T+r—9 /() ds
for z= (0, T—¢) with ¢t (0, T) and thus
lim (T (@) ~Dv(®) =-2-v() —F(0).

Hence v(t) €D(G) antd Go(d) =-L-v(5) —f (@) for 1€ (0, T). Since G
cZ, v(t)eD(Z) and Gv(t) =Zv(t) for t= (0, 7). Thus
() o) =20 +£©
for t€(0, T). From (4) and (11), «(&) =T @) 2x+v(@) D(Z) and
g;-u(t) = —d%-T(t):c-!— —jt—v(t)

=ZT ) x+Zv(@) +1()
=Z(T#®)z+v@))+f&)
=Zu(@®) +f @)
for t€(0, T) and «(0) =z. Thus « is a solution of (1) on [0, T).
(ii) From (5), v(¢) €C*D(Z)cD(G)=D(Z) and Gv(t) =Zv(t) for
t€ (0, T). Since f is continuous on [0, T'), from (10),

%v () =Go(t) +£(2)
=Zv(t) + ()
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is continuous in t€ (0, T). Thus v is continuously dfferentiable on
(0, T) and
7.??” (&) =Zv () +£(2)
for t€ (0, T). As in the proof of (1), « is a solution of (1) on [0, 7).

CoroLLARY 5. Let f(£) €R(C?) for t<[0,T) and let C7Lf(t) be
continuously differentiable for t< [0, T) with f’(t) €R(C) for t<[0, T).
Then u defined by (6) is a unique solution of (1) on [0, T) for z=C?
D(Z).

Proof. Let 2€C2D(Z). From the assumptions, C"1f€L(0, T;X)
and f(¢) is continuously differentiable for z&[0, T'). Since f’(¥) € R(C)
and CIf' (&) =(C71f(®)) for t€[0,T), C () is continuous for
t=[0, 7). Thus

12) v(t) = J ;T(t—s) F(s)ds
:J;T(s)f(t—s) ds

is continuous and differentiable for t&[0, T). From (12),

7 (&) =T @) F0) +ﬁT(s) £ (t—5)ds
=T () £(0) +j;T<z—s) F7(s)ds

is continuous for t&[0, T). Thus v(¢) is continuously differentiable
for t€[0, T). From f(t) €R(C? and (12), v(t) €R(C) for t&[0, T).
The result therefore from Theorm 4, (i).

CoroLLARY 6. Let f(t) €C°D(Z) for t<[0,T) and let C lfeL?
0, T; X) be continuous on[0, T). If C'Zfe L0, T;X), then u defined
by (6) is a unique solution of (1) on [0, T) for z=C2D(Z).

Proof. From f(t) eC?’D(Z), T(@—s)f(s)eD(Z) and

() :j;T(t—s) £()dseCD(Z)

for t<[0, T). Since C'ZfeL'(0, T;X), T(t—s)Zf(s) is integrable
and

Zo(®) :zj;T(t—g £(5)ds
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:J;ZT(t—-s)f(s) ds
:I;T(t—s) Z(s)ds

is continuous for ¢+ [0, 7). The result follows from Theorem 4, (ii).

TueoreM 7. Let f() €R(C% for t<[0,7) with C 2fc L (0,
T;X). Then for every T'< T, u defined by (6) is the uniform limit of
solutions of (1) on [0, T’) for z=C2D(Z).

Proof. Let z,€C2D(Z) such that z,—z in the C~!-graph norm.
Let g,€C¥([0, T"];X) satisfying g,—C72f in L(0, T7/;X). Put f,=
C%g,. Then f,(t) eR(C? for t=[0,T’) and C2f,&CL([0, T'];X).
Thus C71f,eCY ([0, T']: X), £/ (&) =C(C7If,(t))’'€R(C) for t[0, T')
and C71f,—C'f in L'(0, T’;X). From Corollary 5, the equation

L) =2, () £, 0

uﬂ (0) :Xﬂ
has a unique solution =, on [0, T”) and
(13) O =T O ot | T =) fu(5)ds.

From (6) and (13),
lloen (8) —u () || éMﬁ’“‘(Hc_lxn—C—le+ﬂ)|lc_1fn(3) —C7If(s) lds)

and the result follows.
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