LINEAR ABSTRACT CAUCHY PROBLEM ASSOCIATED WITH AN EXPONENTIALLY BOUNDED C-SEMIGROUP IN A BANACH SPACE*

KI SIK HA+, JAI HEUI KIM+ AND JONG KYU KIM++

1. Introduction

The purpose of this paper is to consider the inhomogeneous initial value problem

(1)
$$\begin{cases} \frac{d}{dt}u(t) = zu(t) + f(t) \\ u(0) = x \end{cases}$$

in a Banach space X, where Z is the generator of an exponentially bounded C-semigroup in X, $f(t): [0, T) \rightarrow X$ and $x \in X$. Davies-Pang[1] showed the corresponding homogeneous equation, that is, the equation with $f(t) \equiv 0$, has a unique solution depending continuously on the initial value $x \in CD(Z)$ in the C^{-1} -graph norm on CD(Z) when $T = \infty$.

2. Preliminaries

We recall here definitions and characterizations for an exponentially bounded C-semigroup given by Davies-Pang [1]. Besides [1], one can refere to [2], [3], [4], [5] and [6] for an exponentially bounded C-semigroup in a Banach space.

Let X be a Banach space and let C be an injective bounded linear operator from X into itself with dense range R(C) in X. We say that $\{S(t) | t \ge 0\}$ is an exponentially bounded C-semigroup in X if $\{S(t) | t \ge 0\}$ is a strongly continuous family of bounded linear operator from X into itself satisfying

(a₁)
$$S(0) = C$$
,

(a₂)
$$S(t+s)C=S(t)S(s)$$
 for $t, s \ge 0$,

Received December 10, 1989.

Revised January 25, 1990.

^{*}Partial supprted by KOSEF research grant 88-07-12-01.

(a₃) there exists constants $M \ge 0$ and $a \ge 0$ such that $||S(t)|| \le Me^{at}$ for $t \ge 0$.

Letting $s \rightarrow 0+$ in (a_2) , we have S(t)C=CS(t), $S(t)x \in R(C)$ and $C^{-1}S(t)x=S(t)C^{-1}x$ for $x \in R(C)$.

Let T(t) be the closed linear operator defined by

$$(2) T(t) x = C^{-1}S(t) x$$

for $x \in D(T(t)) = \{x \in X \mid S(t) \mid x \in R(C)\}$. Then $R(C) \subset D(T(t))$ and

(b₁) T(0) x = x for $x \in X$,

(b₂) T(t+s)x=T(t)T(s)x for $x \in R(C^2)$,

(b₃) T(t)x is continuous in $t \ge 0$ for $x \in R(C^2)$.

Let $\lambda > a$. We define the bounded linear operator L_{λ} from X into itself by

$$L_{\lambda}x = \int_{0}^{\infty} e^{-\lambda t} S(t) x dt$$

for $x \in X$. The operator L_{λ} with $\lambda > a$ will be called the C-resolvent of $\{S(t) | t \ge 0\}$. L_{λ} is injective and

$$(\lambda - L_{\lambda}^{-1}C) x = (\mu - L_{\mu}^{-1}C) x$$

for $x \in X$ with $Cx \in R(L_{\lambda}) = R(L_{\mu})$ for λ , $\mu > a$. Therefore the closed linear operator Z defined by

$$Zx = (\lambda - L_{\lambda}^{-1}C) x$$

for $x \in D(Z) = \{x \in X | Cx \in R(L_{\lambda})\}$, is independent of $\lambda > a$. The operator Z will be called the generator of $\{S(t) | t \ge 0\}$ with $\|S(t)\| \le Me^{at}$. We have

$$L_{\lambda}^{-1}Cx = CL_{\lambda}^{-1}x$$
 and $ZCx = CZx$

for $x \in CD(Z)$. The generator Z is densely defined in X and $S(t)x \in D(Z)$,

(3)
$$\frac{d}{dt}S(t)x = ZS(t)x = S(t)Zx$$

for $x \in D(Z)$. Furthermore $T(t) x \in D(Z)$,

(4)
$$\frac{d}{dt}T(t)x = ZT(t)x = T(t)Zx$$

for $x \in CD(Z)$.

We define the linear operator G by

$$Gx = \lim_{t \to 0+} \frac{1}{t} (T(t)x - x)$$

for $x \in D(G) = \{x \in R(C) \mid \lim_{t \to 0+} \frac{1}{t} (T(t)x - x) \text{ exists}\}$. The operator G is

Linear abstract Cauchy problem associated with an exponentially bounded C-semigroup in a Banach space

also densely defined in X and $G \subset Z$. Furthermore $C^4D(Z) \subset D(G)$ and Gx = Zx for $x \in C^4D(Z)$

Here, $C^0 = I$, $C^k = CC^{k-1}$ and $C^kD(Z) = \{C^kx \in X \mid x \in D(Z)\}$ for $k = 1, 2, \cdots$

3. Abstract Cauchy problem

Throughout this section, let $\{S(t) | t \ge 0\}$ be an exponentially bounded C-semigroup with $\|S(t)\| \le Me^{at}$ in a Banach space X and let Z be its generator. Let $T(t) = C^{-1}S(t)$ be the operator defined by (2) and $T < \infty$.

Definition 1. A function $u: [0, T) \to X$ is called a solution of (1) on [0, T) if the following conditions $(c_1) - (c_4)$ are satisfied:

- (c_1) u is continuous on [0, T),
- (c_2) u is continuously differentiable on [0, T),
- (c_3) $u(t) \in D(Z)$ for $t \in (0, T)$,
- (c_4) (1) is satisfied.

We give some properties of a solution of (1) on [0, T).

Proposition 2. Let $f(t) \in R(C)$ for $t \in [0, T)$ with $C^{-1}f \in L^1(0, T; X)$. If u is a solution of (1) on [0, T) for $x \in CD(Z)$, then

(6)
$$u(t) = T(t) x + \int_0^t T(t-s) f(s) ds$$

for $t \in [0, T)$.

Proof. The X-valued function S(t-s)u(s) is differentiable for 0 < s < t and from (3)

(7)
$$\frac{d}{ds}S(t-s)u(s) = -ZS(t-s)u(s) + S(t-s)\frac{d}{ds}u(s) = -ZS(t-s)u(s) + S(t-s)Zu(s) + S(t-s)f(s) = S(t-s)f(s).$$

Since $f \in L^1(0, T; X)$, S(t-s)f(s) is integrable and integrating (7) from 0 to t yields

(8)
$$Cu(t) = S(t) x + \int_0^t S(t-s) f(s) ds.$$

Since $S(t-s)f(s) \in L^1(0, T; X)$ and $C^{-1}S(t-s)f(s) = S(t-s)C^{-1}f(s) \in L^1(0, T; X)$,

it follows from (8) that

$$u(t) = C^{-1}S(t) x + \int_{0}^{t} C^{-1}S(t-s) f(s) ds$$

= $T(t) x + \int_{0}^{t} T(t-s) f(s) ds$.

PROPOSITION 3. Let $f(t) \in R(C)$ for $t \in [0, T)$ with $C^{-1}f \in L^1(0, T; X)$ and let u be a solution of (1) on [0, T) for $x \in C^2D(Z)$. Put

(9)
$$v(t) = \int_0^t T(t-s)f(s) ds$$

for $t \in [0, T)$. Then

(i) v is continuously differentiable on (0, T),

(ii) $v(t) \in D(Z)$ for $t \in (0, T)$ and if f is continuous on (0, T), Zv(t) is continuous on (0, T).

Proof. Let $x \in C^2D(Z)$. (i) From (6) and (9), v(t) = u(t) - T(t)x. Thus v is continuous on [0, T) and differentiable on (0, T). From (4) and Definition 1,

$$\frac{d}{dt}v(t) = \frac{d}{dt}u(t) - \frac{d}{dt}T(t)x$$
$$= \frac{d}{dt}u(t) - T(t)Zx$$

is continuous in $t \in (0, T)$. Thus (i) follows.

(ii) From (4) and Definition 1,

$$v(t) = u(t) - T(t) x \in D(Z)$$

for $t \in (0, T)$ and

$$Zv(t) = Zu(t) - ZT(t) x$$

$$= \frac{d}{dt}u(t) - f(t) - T(t) Zx$$

is continuous in $t \in (0, T)$.

Now we consider the existence of solutions of (1) on [0, T).

Theorem 4. Let $f(t) \in R(C)$ for $t \in [0, T)$ with $C^{-1}f \in L^1(0, T; X)$. Let f be continuous on [0, T) and put

$$v(t) = \int_0^t T(t-s)f(s)\,ds$$

for $t \in [0, T)$.

Linear abstract Cauchy problem associated with an exponentially bounded C-semigroup in a Banach space

- (i) If v is continuously differentiable on (0, T) with $v(t) \in R(C)$ for $t \in [0, T)$, then u defined by (6) is a unique solution of (1) on [0, T) for $x \in C^2D(Z)$.
- (ii) If $v(t) \in C^4D(Z)$ and Zv(t) is continuous in $t \in (0, T)$, then u defined by (6) is a unique solution of (1) on [0, T) for $x \in C^2D(Z)$.

Proof. Let $x \in C^2D(Z)$. The uniqueness follows from Proposition 2. (i) Since $T(t-s)f(s) \in L^1(0,T;X)$, v is continuous on [0,T) and thus u(t) = T(t)x + v(t) is continuous in $t \in [0,T)$. From assumption and (4),

$$\frac{d}{dt}u(t) = \frac{d}{dt}T(t)x + \frac{d}{dt}v(t)$$
$$= T(t)Zx + \frac{d}{dt}v(t)$$

is continuous in $t \in (0, T)$. Thus u is continuously differentiable on (0, T). From the differentiability of v(t) with $v(t) \in R(C)$, we have

$$(10) \quad \frac{1}{\tau} (T(\tau) - I) v(t) = \frac{1}{\tau} (v(t+\tau) - v(t)) - \frac{1}{\tau} \int_{\tau}^{t+\tau} T(t+\tau - s) f(s) \, ds$$

for $\tau \in (0, T-t)$ with $t \in (0, T)$ and thus

$$\lim_{\tau \to 0+} \frac{1}{\tau} (T(\tau) - I) v(t) = \frac{d}{dt} v(t) - f(t).$$

Hence $v(t) \in D(G)$ ant d $Gv(t) = \frac{d}{dt}v(t) - f(t)$ for $t \in (0, T)$. Since G

 $\subset Z$, $v(t) \in D(Z)$ and Gv(t) = Zv(t) for $t \in (0, T)$. Thus

(11)
$$\frac{d}{dt}v(t) = Zv(t) + f(t)$$

for $t \in (0, T)$. From (4) and (11), $u(t) = T(t)x + v(t) \in D(Z)$ and

$$\frac{d}{dt}u(t) = \frac{d}{dt}T(t)x + \frac{d}{dt}v(t)$$

$$= ZT(t)x + Zv(t) + f(t)$$

$$= Z(T(t)x + v(t)) + f(t)$$

$$= Zu(t) + f(t)$$

for $t \in (0, T)$ and u(0) = x. Thus u is a solution of (1) on [0, T).

(ii) From (5), $v(t) \in C^4D(Z) \subset D(G) \subset D(Z)$ and Gv(t) = Zv(t) for $t \in (0, T)$. Since f is continuous on [0, T), from (10),

$$\frac{d^+}{dt}v(t) = Gv(t) + f(t)$$
$$= Zv(t) + f(t)$$

is continuous in $t \in (0, T)$. Thus v is continuously differentiable on (0, T) and

$$\frac{d}{dt}v(t) = Zv(t) + f(t)$$

for $t \in (0, T)$. As in the proof of (1), u is a solution of (1) on [0, T).

Corollary 5. Let $f(t) \in R(C^2)$ for $t \in [0, T)$ and let $C^{-1}f(t)$ be continuously differentiable for $t \in [0, T)$ with $f'(t) \in R(C)$ for $t \in [0, T)$. Then u defined by (6) is a unique solution of (1) on [0, T) for $x \in C^2$ D(Z).

Proof. Let $x \in C^2D(Z)$. From the assumptions, $C^{-1}f \in L^1(0, T; X)$ and f(t) is continuously differentiable for $t \in [0, T)$. Since $f'(t) \in R(C)$ and $C^{-1}f'(t) = (C^{-1}f(t))'$ for $t \in [0, T)$, $C^{-1}f'(t)$ is continuous for $t \in [0, T)$. Thus

(12)
$$v(t) = \int_0^t T(t-s)f(s)ds$$
$$= \int_0^t T(s)f(t-s)ds$$

is continuous and differentiable for $t \in [0, T)$. From (12),

$$v'(t) = T(t)f(0) + \int_0^t T(s)f'(t-s) ds$$

= $T(t)f(0) + \int_0^t T(t-s)f'(s) ds$

is continuous for $t \in [0, T)$. Thus v(t) is continuously differentiable for $t \in [0, T)$. From $f(t) \in R(C^2)$ and (12), $v(t) \in R(C)$ for $t \in [0, T)$. The result therefore from Theorm 4, (i).

Corollary 6. Let $f(t) \in C^5D(Z)$ for $t \in [0, T)$ and let $C^{-1}f \in L^1$ (0, T; X) be continuous on [0, T). If $C^{-1}Zf \in L^1(0, T; X)$, then u defined by (6) is a unique solution of (1) on [0, T) for $x \in C^2D(Z)$.

Proof. From $f(t) \in C^5D(Z)$, $T(t-s)f(s) \in D(Z)$ and

$$v(t) = \int_0^t T(t-s)f(s)ds \in C^4D(Z)$$

for $t \in [0, T)$. Since $C^{-1}Zf \in L^1(0, T; X)$, T(t-s)Zf(s) is integrable and

$$Zv(t) = Z \int_0^t T(t-s) f(s) ds$$

Linear abstract Cauchy problem associated with an exponentially bounded C-semigroup in a Banach space

$$= \int_0^t ZT(t-s)f(s) ds$$
$$= \int_0^t T(t-s)Zf(s) ds$$

is continuous for $t \in [0, T)$. The result follows from Theorem 4, (ii).

THEOREM 7. Let $f(t) \in R(C^2)$ for $t \in [0, T)$ with $C^{-2}f \in L^1(0, T; X)$. Then for every T' < T, u defined by (6) is the uniform limit of solutions of (1) on [0, T') for $x \in C^2D(Z)$.

Proof. Let $x_n \in C^2D(Z)$ such that $x_n \to x$ in the C^{-1} -graph norm. Let $g_n \in C^1([0, T']; X)$ satisfying $g_n \to C^{-2}f$ in $L^1(0, T'; X)$. Put $f_n = C^2g_n$. Then $f_n(t) \in R(C^2)$ for $t \in [0, T']$ and $C^{-2}f_n \in C^1([0, T']; X)$. Thus $C^{-1}f_n \in C^1([0, T']; X)$, $f_n'(t) = C(C^{-1}f_n(t))' \in R(C)$ for $t \in [0, T']$ and $C^{-1}f_n \to C^{-1}f$ in $L^1(0, T'; X)$. From Corollary 5, the equation

$$\begin{cases} \frac{d}{dt}u_n(t) = Zu_n(t) + f_n(t) \\ u_n(0) = X_n \end{cases}$$

has a unique solution u_n on [0, T') and

(13)
$$u_n(t) = T(t) x_n + \int_0^t T(t-s) f_n(s) \, ds.$$

From (6) and (13),

$$||u_n(t) - u(t)|| \le Me^{at} (||C^{-1}x_n - C^{-1}x|| + \int_0^t ||C^{-1}f_n(s) - C^{-1}f(s)||ds)$$

and the result follows.

References

- 1. E.B. Davies and M.M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. 55(1987), 181-208.
- 2. K.S. Ha, Spectral mapping theorems for exponentially bounded C-semigroups in Banach spaces, Semigroup Forum 38(1989) 215-221.
- 3. I. Miyadera, On the generation of exponentially bounded C-semigroups, Proc. Jap. Acad. 62, Ser. A (1986) 239-242.
- 4. I. Miyadera and N. Tanaka, Exponentially bounded C-semigroups and generation of semigroups, to appear in J. Math. Anal. Appl.
- N. Tanaka, Holomorphic C-semigroups and holomorphic semigroups, Semigroup Forum 38(1989) 253-261.

Ki Sik Ha, Jai Heui Kim and Jong Kyu Kim

- 6. N. Tanaka, On the exponentially bounded C-semigroups, Tokyo J. Math. 10(1987) 107-117.
 - ⁺Pusan National University Pusan 609-735, Korea and
 - ++Kyungnam National University Masan 630-701, Korea