DUAL OPERATOR ALGEBRAS AND C_0 -OPERATORS

IL Bong Jung* and Yong Chan Kim**

1. Introduction

Let \mathcal{X} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains $I_{\mathcal{H}}$ and is closed in the weak* topology on $\mathcal{L}(\mathcal{H})$. The theory of dual algebras have been applied to the topics of invariant subspaces, dilation theory, and reflexivity (cf. [6]). In [5], Bercovici-Foias-Pearcy studied the problem of solving systems of simultaneous equations in the predual of a dual algebra. The theory of dual algebras is deeply related to the study of the classes $A_{m,n}$ (to be defined below), where m and n are any cardinal numbers with $1 \le m, n \le \aleph_0$. That is the main topic of this paper. Jung [16] showed that the classes $A_{m,n}$ are distinct one from another. Apostol-Bercovici-Foias-Pearcy [1] obtained an abstract geometric criterion for membership in A_{\aleph_0} . Bercovici-Brown-Chevreau-Exner-Pearcy [7][10][11][12] obtained some relationship between dual algebras and Fredholm theory, and established topological criteria for membership in A_{\aleph_0} or A_{1,\aleph_0} . Bercovici [3] and Chevreau [9] proved independently that $A=A_1$. Recently several functional analysists have studied sufficient conditions for membership in the class $A_{1, \, \aleph_0}, \, A_{\aleph_0}$ or A(cf. [13], [15], [17]). As a sequel to this study, we shall obtai a sufficient condition for membership in the classes $A_{1,n}$ in this paper. Also, we study C_0 -operators and the unilateral shift $S^{(n)}$ of multiplicity n concerning the classes $A_{m,n}$.

2. Notation and preliminaries

The notation and terminology employed herein agree with those in

Received February 3, 1990.

^{*}The first author was partially supported by the Basic Science Research Institute Program, Ministry of Education, 1989.

^{**}The second author was partially supported by Korean Traders Scholarship Foundation.

[2], [6], [8], and [19]. The class $\mathscr{C}_1(\mathscr{H})$ is the Banach space of trace-class operators on \mathscr{H} equipped with the trace norm. The dual algebra \mathscr{A} can be identified with a dual space of $Q_{\mathscr{A}} = \mathscr{C}_1(\mathscr{H})/^{\perp}\mathscr{A}$, where $^{\perp}\mathscr{A}$ is the preannihilator in $\mathscr{C}_1(\mathscr{H})$ of \mathscr{A} , under the pairing

(2.1)
$$\langle T, [L]_{\beta} \rangle = tr(TL), T \in \mathcal{A}, [L] \in \mathcal{Q}_{\mathcal{A}}.$$

We write [L] for $[L]_{\mathcal{A}}$ when there is no possibility of confusion. If x and y are vectors in \mathcal{X} , we denote a rank one operator $(x \otimes y)(u) = (u, y)x$ for all u in \mathcal{X} . As noted above, we write $[x \otimes y]$ for $[x \otimes y]_{\mathcal{A}}$ when there is no possibility of confusion.

Definition 2.1 [6]. Suppose m and n are cardinal numbers such that $1 \le m, n \le \aleph_0$. A dual algebra \mathcal{A} will be said to have property $(A_{m,n})$ if every $m \times n$ system of simultaneous equations of the form (2.2) $[x_i \otimes y_j] = [L_{ij}], \quad 0 \le i < m, \quad 0 \le j < n,$

where $\{[L_{ij}]\}_{\substack{0 \le i < m \ 0 \le j < n}}$ is an arbitrary $m \times n$ array from $Q_{\mathcal{A}}$, has a solution $\{x_i\}_{0 \le i < m}$, $\{y_j\}_{0 \le j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} . Furthermore, if m and n are positive integers and r is a fixed real number satisfying $r \ge 1$, a dual algebra \mathcal{H} (with property $(A_{m,n})$) is said to have property $(A_{m,n}(r))$ if for every s > r and every $m \times n$ array $\{[L_{ij}]\}_{\substack{0 \le i < m \ 0 \le j < n}}$ from $Q_{\mathcal{H}}$, there exist sequences $\{x_i\}_{0 \le i < m}$, and $\{y_j\}_{0 \le j < n}$ that satisfy (2.2) and also satisfy the following conditions:

(2. 3a)
$$||x_i||^2 \le \sum_{0 \le j \le n} ||[L_{ij}]||, \quad 0 \le i < m$$

and

(2. 3b)
$$||y_j||^2 \le s \sum_{0 \le i < m} ||[L_{ij}]||, \quad 0 \le j < n.$$

Finally, a dual algebra $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ has property $(A_m, \aleph_0(r))$ (for some real number $r \geq 1$) if for every s > r and every array $\{ [L_{ij}] \}_{0 \leq i < m \atop 0 \leq j < \infty}$ from $Q_{\mathcal{A}}$ with summable rows, there exist sequences $\{x_i\}_{0 \leq i < m}$ and $\{y_j\}_{0 \leq j < \infty}$ of vectors from \mathcal{H} that satisfy (2, 2) and (2, 3a, b) with the replace-

ment of n by \aleph_0 . Properties $(A_{\aleph_0, n}(r))$ and $(A_{\aleph_0, \aleph_0}(r))$ are defined similarly.

For a brief notation, we shall denote $(A_{n,n})$ by (A_n) . A contraction operator $T \in \mathcal{L}(\mathcal{H})$ is absolutely continuous if in the canonical decomposition $T = T_1 \oplus T_2$, where T_1 is a unitary operator and T_2 is a completely nonunitary contraction, T_1 is either absolutely continuous or acts on

the space (0). We write D for the open unit disc in the complex plane C and T for the boundary of D. The space $L^p = L^p(T)$, $1 \le p \le \infty$, is the usual Lebesgue function space relative to normalized Lebesgue measure m on T. The space $H^p = H^p(T)$, $1 \le p \le \infty$, is the usual Hardy space. It is well-known (cf. [14]) that the space H^∞ is the dual space of L^1/H_0^1 , where

(2.4)
$$H_0^1 = \{ f \in L^1 : \int_0^{2\pi} f(e^{it}) e^{int} dt = 0, \text{ for } n = 0, 1, 2, ... \}$$
 and the duality is given by the pairing

$$(2.5) \qquad \langle f, [g] \rangle = \int_{T} fg \ dm, \text{ for } f \in H^{\infty}, \ [g] \in L^{1}/H_{0}^{1}.$$

We denote by \mathcal{A}_T the dual algebra generated by T and denote by $Q_{\mathcal{A}}$ the predual space $Q_{\mathcal{A}_T}$ of \mathcal{A}_T .

Theorem 2.2 [6, Theorem 4.1]. Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there exists a functional calculus $\Phi_T: H^\infty \longrightarrow \mathcal{A}_T$ defined by $\Phi_T(f) = f(T)$ for every f in H^∞ . The mapping Φ_T is a norm-decreasing, weak* continuous algebra homomorphism, and the range of Φ_T is weak* dense in \mathcal{A}_T . Furthermore, there exists a bounded, linear, one-to-one map ϕ_T of Q_T into L^1/H^1_0 such that $\Phi_T = \phi_T^*$.

DEFINITION 2.3 [5]. We define by $\mathbf{A} = \mathbf{A}(\mathcal{H})$ the class of all absolutely continuous contractions T in $\mathcal{L}(\mathcal{H})$ for which the functional calculus $\Phi_T: H^{\infty} \longrightarrow \mathcal{A}_T$ is an isometry. Furthermore, if m and n are any cardinal numbers such that $1 \le m$, $n \le \aleph_0$, we define by $\mathbf{A}_{m,n} = \mathbf{A}_{m,n}$ (\mathcal{H}) the set of all T in $\mathbf{A}(\mathcal{H})$ such that the singly generated dual algebra \mathcal{A}_T has property $(\mathbf{A}_{m,n})$.

If follows from [5] that if $T \in A$, then Φ_T is a weak* homeomorphism and ϕ_T is an isometry of Q_T onto L^1/H_0^1 . Let \mathcal{K} be a Hilbert space and let $T_1, T_2 \in \mathcal{L}(\mathcal{K})$. Then we write $T_1 \cong T_2$ if T_1 is unitarily equivalent to T_2 . Throughout this paper, N is the set of all natural numbers. For an invariant subspace \mathcal{M} for an operator $T \in \mathcal{L}(\mathcal{K})$, we write $T \mid \mathcal{M}$ for the restriction to \mathcal{M} .

3. A sufficient condition for membership in the classes $A_{1,n}$

We start this section as the following lemma.

LEMMA 3.1. Suppose $T, S \in A(\mathcal{H})$. Let $[L]_T \in Q_T$ and let $[M]_S \in Q_S$. Then $\phi_T([L]_T) = \phi_S([M]_S)$ if and only if $\langle T^n, [L]_T \rangle = \langle S^n, [M]_S \rangle$, for n = 0, 1, 2, ...

Proof (
$$\Rightarrow$$
) For $n=0, 1, 2, ...$, we have $\langle T^n, [L]_T \rangle = \langle T^n, \phi_T^{-1}\phi_S([M]_S) \rangle$ (3.1)
$$= \langle \phi_T(\xi^n), \phi_T^{-1}\phi_S([M]_S) \rangle$$

$$= \langle \xi^n, \phi_S([M]_S) \rangle$$

$$= \langle S^n, [M]_S \rangle.$$

(\Leftarrow) Since $\langle p(T), [L]_T \rangle = \langle p(S), [M]_S \rangle$ for any polynomial p, we have

$$(3.2) \langle h(T), [L]_T \rangle = \langle h(S), [M]_S \rangle$$

for any $h \in H^{\infty}$. Then

$$(3.3) \langle h, \phi_T([L]_T) \rangle = \langle h(T), [L]_T \rangle = \langle h(S), [M]_S \rangle = \langle h, \phi_S([M]_S) \rangle,$$

for any $h \in H^{\infty}$. Hence $\phi_T([L]_T) = \phi_S([M]_S)$. The proof is complete.

The following proposition is a generalization of [15, Proposition 2.4].

PROPOSITION 3. 2. Suppose \mathcal{H}_i is a separable, infinite dimensional, complex Hilbert space, for $i=1, 2, \dots, m$. Let $n_i \in \mathbb{N}$, and let $T_i \in A_{1, n_i}$, (\mathcal{H}_i) (r_i) and $r_i \geq 1$ for $i=1, 2, \dots, m$. Then

$$(3.4) \qquad \qquad \bigoplus_{i=1}^{m} T_{i} \in \boldsymbol{A}_{1,N}(\bigoplus_{i=1}^{m} \mathcal{H}_{i})(r),$$

where $r = \max\{r_i | 1 \le i \le m\}$ and $N = n_1 + \cdots + n_m$.

Proof. Let us denote $\hat{T} = \bigoplus_{i=1}^m T_i$. Let s > r and let

$$(3.5) \qquad \{ [L_k]_{\hat{T}} \}_{1 \leq k \leq N} \subset Q_{\hat{T}}.$$

For a convenient calculation, we correspond $\{[L_j^{(i)}]\}_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n_i}}$ with $\{[L_k]\}_{1 \leq k \leq N}$. Let us denote $\phi_i = \phi_{T_i}^{-1}\phi_{\hat{T}}$. Then it is obvious that ϕ_i is an isometric isomorphic weak* homeomorphism from $Q_{\hat{T}}$ onto Q_{T_i} . Since $\phi_i([L_j^{(i)}]_{\hat{T}}) \in Q_{T_i}$ and $s > r_i$, for $1 \leq j \leq n_i$, $1 \leq i \leq m$, there exist vectors $x^{(i)}$ and $y_j^{(i)}$ in \mathcal{H}_i , $1 \leq i \leq m$, $1 \leq j \leq n_i$ such that

$$(3.6a) \phi_i([L_j^{(i)}]_{\hat{T}}) = [x^{(i)} \otimes y_j^{(i)}]_{T_i},$$

(3.6b)
$$||x^{(i)}||^2 \le s \sum_{j=1}^{n_i} ||[L_j^{(i)}]_{\hat{T}}||$$
, and $||y_j^{(i)}||^2 \le s ||[L_j^{(i)}]_{\hat{T}}||$.

Now let
$$\tilde{x} = x^{(1)} \oplus \cdots \oplus x^{(m)}$$
 and $\tilde{y}_j^{(i)} = \underbrace{0 \oplus \cdots \oplus 0}_{(i-1)} \oplus y_j^{(i)} \oplus 0 \oplus \cdots \oplus 0$, for

 $1 \le j \le n_i$, $1 \le i \le m$. Then it follows from Lemma 3.1 and (3.6a) that we have

$$(3.7) \phi_i([\tilde{x} \otimes \tilde{y}_j^{(i)}]_{\hat{T}}) = [x^{(i)} \otimes y_j^{(i)}]_{T_i} = \phi_i([L_i^{(i)}]_{\hat{T}})$$

since

$$(3.8) \quad \langle \hat{T}^{n}, [\tilde{x} \otimes \tilde{y}_{j}^{(i)}]_{\hat{T}} \rangle = (\hat{T}^{n}\tilde{x}, \tilde{y}_{j}^{(i)}) \\ = (T_{i}^{n}x^{(i)}, y_{j}^{(i)}) \\ = \langle T_{i}^{n}, [x^{(i)} \otimes y_{j}^{(i)}]_{T_{i}} \rangle, \text{ for } n = 0, 1, 2, \cdots.$$

Hence $[\tilde{x} \otimes \tilde{y}_j^{(i)}]_{\hat{T}} = [L_j^{(i)}]_{\hat{T}}$. Furthermore, since

(3. 9)
$$\|\tilde{x}\|^2 = \sum_{i=1}^m \|x^{(i)}\|^2 \le \sum_{\substack{1 \le i \le m \\ 1 \le j \le n_i}} \|[L_j^{(i)}]_{\hat{T}}\|$$

and

$$(3.10) \|\tilde{y}_{j}^{(i)}\|^{2} = \|y_{j}^{(i)}\|^{2} \le s \|[L_{j}^{(i)}]_{\hat{T}}\|, 1 \le j \le n_{i}, 1 \le i \le m,$$

we have $\hat{T} \in A_{1,N}(\bigoplus_{i=1}^m \mathcal{H}_i)(r)$. Thus the proof is complete.

It is well known that $T \in A_{1,n}(\mathcal{X})$ if and only if for any weak*-continuous functional φ_i on \mathcal{A}_T , $0 \le i < n$, there exist vectors x and y_i in \mathcal{H} , $0 \le i < n$ such that

(3.11)
$$\varphi_i(h(T)) = (h(T)x, y_i).$$

Using the above statement, we obtain a sufficient condition for membership in $A_{1,n}$.

Theorem 3.3. Suppose $T \in A(\mathcal{H})$ and $n \in \mathbb{N}$. Assume that for any \tilde{x} in $\underbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}_{(n)}$, there exists a vector x in \mathcal{H} such that

$$(3.12n) \qquad \tilde{T} \mid (\bigvee_{k\geq 0} \tilde{T}^k \tilde{x}) \cong T \mid (\bigvee_{k\geq 0} T^k x),$$
where $\tilde{T} = \underbrace{T \oplus \cdots \oplus T}_{(n)}$. Then $T \in A_{1,n}$.

Proof. Let $\zeta_i: \mathcal{A}_T \longrightarrow C$ be a weak*-continuous functional, for i=1, 2, ..., n. Then it follows from [6, Proposition 1.7] that there exists $[L_i]_T \in Q_T$, i=1, 2, ..., n, such that

(3.13)
$$\zeta_i(h(T)) = \langle h(T), [L_i]_T \rangle, \quad \forall h \in H^{\infty}.$$

Furthermore, since $A = A_1$ (cf. [3], [9]), there exist vectors x_i and

 y_i in \mathcal{H} , i=1, 2, ..., n, such that $[L_i]_T = [x_i \otimes y_i]_T$. It is equivalent to (3.14) $\zeta_i(h(T)) = (h(T)x_i, y_i), \forall h \in H^{\infty}, i=1, 2, ..., n$.

Moreover, we have $\tilde{T} \in A_{1,n}$ by Proposition 3.2. Since

$$(3. 15) \zeta_{i}(T^{k}) = (T^{k}x_{i}, y_{i})$$

$$= (\tilde{T}^{k}(x_{i} \underline{\oplus} 0 \underline{\oplus} \cdots \underline{\oplus} 0), \quad (y_{i} \underline{\oplus} 0 \underline{\oplus} \cdots \underline{\oplus} 0))$$

$$= \langle \tilde{T}^{k}, [(x_{i} \underline{\oplus} 0 \underline{\oplus} \cdots \underline{\oplus} 0) \otimes (y_{i} \underline{\oplus} 0 \underline{\oplus} \cdots \underline{\oplus} 0)]_{\tilde{T}} \rangle,$$

$$(n-1) (n-1) (n-1)$$

for i=1, 2, ..., n, k=0, 1, 2, ..., there exist vectors $\tilde{x}, \tilde{y}_i \in \underbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}_{(n)}$,

i=1, 2, ..., n such that

(3. 16)
$$\zeta_i(T^k) = (\tilde{T}^k \tilde{x}, \tilde{y}_i), i=1, 2, ..., n, k=0, 1, 2,$$

If we set $\mathfrak{M} = \bigvee_{0 \le k} \tilde{T}^k \tilde{x}$, we get from the hypothesis that there exist a vector u in \mathcal{H} and a unitary operator

$$(3.17) U: \mathfrak{M} \longrightarrow \bigvee_{0 \leq k} T^k u$$

such that $TU=U(\tilde{T}|\mathcal{M})$. Hence if we denote $v_i=UP_{\mathcal{M}}\tilde{y}_i, i=1, 2, ..., n$, where $P_{\mathcal{M}}$ is the orthogonal projection whose range is \mathcal{M} , then

(3. 18)
$$(\tilde{T}^{k}\tilde{x}, \tilde{y}_{i}) = (\tilde{T}^{k}\tilde{x}, P_{\mathfrak{M}}\tilde{y}_{i}) = (\tilde{T}^{k}\tilde{x}, U^{*}v_{i})$$

$$= (U\tilde{T}^{k}\tilde{x}, v_{i}) = (T^{k}U\tilde{x}, v_{i}), \text{ for } i=1, 2, ..., n,$$

$$k=0, 1, 2,$$

According to (3.16), we have

(3.19)
$$\zeta_i(T^k) = (T^k U \tilde{x}, v_i), i=1, 2, ..., n, k=0, 1, 2,$$

Therefore it is obvious that $T \in A_{1,n}$. Therefore the proof is complete.

The following example shows that there exists an operator satisfying the condition (3. 12n) in Theorem 3. 3.

Example 3.4. The (forward) unilateral shift operators S of multiplicity one satisfies (3.12n) in Theorem 3.3 for any $n \in \mathbb{N}$, since S has a cyclic vector.

REMARK 3.5. Since the backward unilater shift $S^{(n)*}$ of multiplicity $n \ge 2$ has a cyclic vector, $S^{(n)*}$ cannot have the property (3.12n) in Theorem 3.3 for $n \ge 2$. Hence the converse implication of Theorem 3.3 is not always true.

4. C_0 -operators and the classes $A_{m,n}$

Before starting this section, we recall that a set $\{e_i\}_{0 \le i < n}$ of vectors in a Hilbert space $\mathcal K$ is an n-cyclic set for an operator A in $\mathcal L(\mathcal K)$ if $\mathcal K$ is the smallest invariant subspace for A containing $\{e_i\}_{0 \le i < n}$. If $T \in \mathcal L(\mathcal K)$ and $\mathcal M$ is a semi-invariant subspace for T, we shall write $T_{\mathcal M} = P_{\mathcal M} T | \mathcal M$ for the compression of T to $\mathcal M$, where $P_{\mathcal M}$ is the orthogonal projection whose range is $\mathcal M$. If X is a (unbounded) linear transformation, we write $\mathcal D(X)$ for the domain of X and $\mathcal L(X)$ for the range of X. Recall that a completely nonunitary contraction $T \in \mathcal L(\mathcal K)$ is said to be of class C_0 if there exists $u \in H^\infty$, $u \not\equiv 0$, such that the functional calculus u(T) = 0. The following is an intresting dilation theorem concerning C_0 -operators and the classes $A_{m,n}$.

THEOREM 4.1. Suppose $T \in A_{m,n}(\mathcal{H})$ for some positive integers m and n. Let A be any absolutely continuous contraction on a Hilbert space \mathcal{K} and let $A \notin C_0$. If A possesses an m-cyclic $\{e_1, \dots e_m\}$ of vectors in \mathcal{K} and its adjoint operator A^* has an n-cyclic set $\{f_1, \dots, f_n\}$ of vectors in \mathcal{K} , then there exist \mathcal{M} , $\mathcal{M} \in \text{Lat}(T)$ with $\mathcal{M} \supset \mathcal{M}$ and a closed one-to-one linear transformation

$$(4. 1) X : \mathcal{D}(X) \longrightarrow \mathcal{M} \ominus \mathcal{U}$$
such that

- (a) the linear manifold $\mathfrak{D}(X)$ is dense in \mathcal{K} and contains $\{e_1, \dots, e_m\}$,
- (b) the range $\mathcal{R}(X)$ of X is dense in $\mathcal{M} \supseteq \mathcal{N}$, and
- (c) $A\mathcal{Q}(X) \subset \mathcal{Q}(X)$ and $T_{\mathfrak{M} \oplus \mathfrak{N}} Xz = XAz$ for all z in $\mathcal{Q}(X)$
- (d) $T_{\mathfrak{M} \ominus \mathfrak{A}} \notin C_0$.

Proof. (a), (b) and (c) follow from [16, Theorem 3.1]. Hence we shall claim (d). Let us denote $\tilde{T} = T_{\mathfrak{M} \ominus \mathcal{M}}$ and suppose $\tilde{T} \in C_0$. Then there exists a bounded analytic function $h \in H^{\infty}$ such that $h(\tilde{T}) = 0$. Let $p_n(\lambda)$ be polynomials such that $p_n \longrightarrow h$ in H^{∞} . Since $\tilde{T}Xz = XAz$ for all z in $\mathcal{D}(X)$, we have

(4.2)
$$\tilde{T}^k X z = X A^k z$$
 for all z in $\mathcal{D}(X)$, $k=0,1,2,\cdots$. Thus (4.3) $p_n(\tilde{T}) X z = X p_n(A) z$ for all z in $\mathcal{D}(X)$. Moreover, since (4.4) $X p_n(A) z = p_n(\tilde{T}) X z \longrightarrow h(\tilde{T}) X z (n \longrightarrow \infty)$

and since

$$(4.5) p_n(A)z \longrightarrow h(A)z (n \longrightarrow \infty),$$

it follows from the closedness of X that

$$(4.6) Xh(A)z = h(\tilde{T})Xz$$

for all z in $\mathcal{D}(X)$. Hence Xh(A)z=0 for all z in $\mathcal{D}(X)$. So h(A)z=00 for all z in $\mathcal{Q}(X)$ because X is one-to-one. Since $\mathcal{Q}(X)$ is dense in \mathcal{K} , we have h(A) = 0. Therefore $A \in C_0$ and this contradiction proves the theorem.

We now give two simple propositions before suggesting a conjecture.

[18, Theorem 1]. Let $S^{(n)}$ be a unilateral shift of Proposition 4. 2 multiplicity n. Assume that

$$(4.7) S^{(n)} \cong \begin{pmatrix} S^{(n)} & * \\ 0 & E \end{pmatrix}.$$

Then $E \in C_0$.

For a given contraction T in $\mathcal{L}(\mathcal{H})$, we recall (cf. [19]) that

(4.8)
$$D_T = (I - T * T)^{\frac{1}{2}}, D_{T*} = (I - T T^*)^{\frac{1}{2}}$$

(4.9) $\mathcal{Q}_T = \overline{\text{Range}(D_T)}, \mathcal{Q}_{T*} = \overline{\text{Range}(D_{T*})}.$

$$(4.9) \mathcal{D}_T = \overline{\text{Range}(D_T)}, \ \mathcal{D}_{T^*} = \overline{\text{Range}(D_{T^*})}.$$

$$(4. 10) d_T = \dim \mathcal{D}_T, \text{ and } d_{T^*} = \dim \mathcal{D}_{T^*}.$$

Proposition 4.3. Let $S^{(n)}$ be a unilateral shift of multiplicity n. Suppose

$$(4. 11) S^{(n)} \cong \begin{pmatrix} S^{(n)} & * \\ 0 & E \end{pmatrix}.$$

Then $S^{(n)} \oplus E \in A_{n, \aleph_0}(1) \setminus A_{n+1, 1}$.

Proof. By Proposition 4.2, we have $E \in C_0$. Furthermore, it is easy to show that $d_E = d_{E*} \le n$. According to [16, Corollary 5.4], $S^{(n)} \oplus E \in A_{n, \aleph_0}(1) \setminus A_{n+1, 1}$. Hence this proposition is proved.

Finally according to Proposition 4.3 and [16, Corollary 5.4], we can conjecture the following statement.

Conjecture 4.4. We conjecture that if B is an operator of class C_0 acting on a separable Hilbert space, then we have

$$(4.12) S^{(n)} \oplus B \in \mathbf{A}_{n, \aleph_0}(1) \setminus \mathbf{A}_{n+1, 1}, \quad n \in \mathbf{N}.$$

References

- C. Apostol, H. Bercovici, C. Foias and C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra.
 I, J. Funct. Anal., 63(1985), 369-404.
- H. Bercovici, Operator theory and arithemetic in H[∞], Math. Surveys and Monographs, No. 26, A.M.S. Providence, R.I., 1988.
- 3. _____, Factorization theorems and the structure of operators on Hilbert space, Ann. of Math., 128(1988), 399-413.
- 4. _____, Contribution to the structure theory of the class A, J. Funct. Anal., 78(1988), 197-207.
- H. Bercovici, C. Foias and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J., 30(1983), 335-354.
- 6. _____, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conference Series, No. 56, A.M.S. Providence, R.I., 1985.
- 7. S. Brown, B. Chevreau and C. Pearcy, On the structure of contraction operators. II, J. Funct. Anal., 76(1988), 30-55.
- 8. A. Brown and C. Pearcy, Introduction to operator theory. I, Elements of functional analysis, Springer-Verlag, New York, 1977.
- 9. B. Chevreau, Sur les contrations à calcul fontionnel isométrique. II, submitted.
- B. Chevreau, G. Exner and C. Pearcy, On the structure of contraction operators. III, Michigan Math. J. 36(1989), 29-62.
- 11. B. Chevreau and C. Pearcy, On the structure of contraction operators with applications to invariant subspaces, J. Funct. Anal., 67(1986), 360-379.
- 12. _____, On the structure of contraction operators. I, J. Funct. Anal., 76 (1988), 1-29.
- G. Exner and P. Sullivan Normal operator and the classes A_n, J. Operator Theory, 19(1988), 81-94.
- 14. K. Hoffman, Banach spaces of analytic function, Prentic-Hall, Englewood Cliffs, N. J., 1962.
- P. Sullivan, Subnormal operators in A, J. Operator Theory, 18(1987), 237– 248.
- 16. I. Jung, Dual operator algebras and the classes $A_{m,n}$. I, J. Operator Theory (to appear).
- 17. _____, Dual operator algebras and the classes $A_{m,n}$. II (preprint).
- 18. I. Jung and Y. Kim, A note on unilateral shift operators and C_0 -operators (submitted).

Il Bong Jung and Yong Chan Kim

19. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on the Hilbert space, North Holland Akademiai Kiado, Amsterdam/Budapest, 1970.

Kyungpook National University Taegu 702-701, Korea and Yeungnam University Kyungsan 713-749, Korea