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DUAL OPERATOR ALGEBRAS AND C,-OPERATORS

I. Bone June* anp Yone Cuan Kiw**

1. Introduction

Let & be a separable, infinite dimensional, complex Hilbert space
and let £(%) be the algebra of all bounded linear operators on &#. A

dual algebra is a subalgebra of £(&) that contains I, and is closed in
the weak* topology on 2(%). The theory of dual algebras have been
applied to the topics of invariant subspaces, dilation theory, and
reflexivity (cf. [6]). In [5], Bercovici-Foias-Pearcy studied the pro-
blem of solving systems of simultaneous equations in the predual of a
dual algebra. The theory of dual algebras is deeply related to the
study of the classes 4, , (to be defined below), where m and » are
any cardinal numbers with 1<m, n<¥, That is the main topic of this
paper. Jung [16] showed that the classes A, , are distinct one from
another. Apostol-Bercovici-Foias-Pearcy [1] obtained an abstract geo-
metric criterion for membership in Ay, Bercovici-Brown-Chevreau-
Exner-Pearcy [7][10][11][12] obtained some relationship between dual
algebras and Fredholm theory, and established topological criteria for
membership in 4y or A, %, DBercovici [3] and Chevreau [9] proved
independently that A=A,. Recently several functional analysists have
studied sufficient conditions for membership in the class 4, gy Ax, or A
(cf. [13],[15], [17]). As a sequel to this study, we shall obtai a
sufficient condition for membership in the classes A4, , in this paper.
Also, we study Cy-operators and the unilateral shift ™ of multiplicity
n concerning the classes A4,, ,.

2. Notation and preliminaries

The notation and terminology employed herein agree with those in
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(2], [6], [8], and [19]. The class ¥, (&) is the Banach space of trace—
class operators on & equipped with the trace norm. The dual algebra
A can be identified with a dual space of Q,=%,(%#)/+{, where ‘4 is
the preannihilator in %;(%) of ¥, under the pairing

2.1 (T, [L]y»=tr(TL), TeA, [L]1<Qa
We write [L] for [L], when there is no possibility of confusion. If
z and y are vectors in &, we denote a rank one operator (z®y) (u) =
(#, y)x for all « in H. As noted above, we write [z®y] for [z®y]4
when there is no possibility of confusion.

DermviTion 2.1 [6]. Suppose m and » are cardinal numbers such
that 1<m, n<¥,. A dual algebra # will be said to have property
(A,,.) if every mXn system of simultaneous equations of the form

2.2) [2:Qy;]1=[L;;], 0<i<m, 0<ji<ln,
where {[L;;]}oci<n is an arbitrary mX» array from Qq has a solution
0gj<n

{2} oci<m {¥j}0sj<n consisting of a pair of sequences of vectors from

XK. Furthermore, if m and 7 are positive integers and r is a fixed real

number satisfying r>1, a dual algebra 4 (with property (4,..) is

said to have property (4, ,(r)) if for every s>~ and every mXn

array { [Lij]}%?ém from Q, there exist sequences {z;}p<icm, and
i<n

{#j}0<j<n that satisfy (2.2) and also satisfy the following conditions:

(230 lail?<s B TLil, 0<i<m
and
(2. 38 Isjle<s BITLIN, 0<i<n

Finally, a dual algebra d—£(&%) has property (Ap,x,(r)) (for some
real number r>1) if for every s>r and every array {{Li;]} oci<m from
05j<o0

Qq with summable rows, there exist sequences {z;}y<i<,, and {9} 0< j<oo
of vectors from % that satisfy (2.2) and (2.3a,b) with the replace-
ment of z by N, Properties (Ay,,»(r)) and (Ay,,x,(r)) are defined
similarly.

For a brief notation, we shall denote (4,,,) by (A4,). A contraction
operator T € £(X) is absolutely continuous if in the canonical decomposi-
tion T=T1@T; where T is a unitary operator and T, is a completely
nonunitary contraction, T, is either absolutely continuous or acts on
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the space (0). We write D for the open unit disc in the complex
plane C and T for the boundary of D. The space L=1#(T), 1<p<
oo, is the usual Lebesgue function space relative to normalized Lebesgue
measure m on T. The space H*=H?(T), 1<p<oo, is the usual Hardy
space. It is well-known (cf. [14]) that the space H= is the dual space
of LY/H)}, where

2.4 Hi={feLl :JZ"f(eit)ewdt:o, for n=0,1,2, ...}
and the duality is given by the pairing
@5 fleD=[ fe dm for feH~ [flel/H}.

We denote by @1 the dual algebra generated by T and denote by Qg4
the predual space Qg of A7

Tueorem 2.2 [6, Theorem 4.1]. Let T be an absolutely continuous
contraction in L(H). Then there exists a functional calculus Or: H>
——>{r defined by Or(f)=F(T) for every f in H®. The mapping Dr
is a norm—decreasing, weak* continuous algebra homomorphism, and the
range of Or is weak* dense in (1. Furthermore, there exists a bounded,
linear, one—to-one map ¢r of Qr into L\/H} such that Or=a,*.

Derivition 2.3 [5]. We define by A=A (%) the class of all absolu-
tely continuous contractions T in £(%) for which the functional
calculus @7 : H*——>dy is an isometry. Furthermore, if m and =#
are any cardinal numbers such that 1<m, n<,, we define by A, ,=A4,, .
(&) the set of all T in A(%) such that the singly generated dual
algebra @1 has property (A, ).

If follows from [5] that if T€ A, then ®; is a weak® homeomor-
phism and ¢r is an isometry of Q7 onto L/H}. Let & be a Hilbert
space and let T, T,=£(X). Then we write T,= T, if T, is unitarily
equivalent to T, Throughout this paper, N is the set of all natural
numbers. For an invariant subspace % for an operator Te4(X), we
write T|% for the restriction to 7.

3. A sufficient condition for membership in the classes A,

We start this section as the following lemma.
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Lemva 3.1, Suppose T, S€ A(X). Let [L]r€Qr and let [M]5€ Qs.
Then ¢ ([L]7) =¢s([M1s) if and only if T [L]>=<8" [M]s>,
Sor n=0,1,2, ...

Proof (=) For n=0,1, 2, ..., we have
LT [L]r>=<T" ¢ s ([M]s) >
(3.1) =@ ("), ¢ s ([(M]s) >
=&, ¢ ([M]s) >
=<8, [M]s>.
(&) Since <p(T), [L1r>=<p(S),[M]s> for any polynomial p,
we have
(3.2 <A(T), [L17>=<h(S), [M]s>
for any k€ H*=. Then
(8.3) <k or([LIp)>=<h(T), [L1r>=<k(S), [M]s>
=<h, ds([M]s) >,
for any he H=. Hence ¢7([L]1) =¢s([M]s). The proof is complete.

The following proposition is a generalization of [15, Proposition
2. 4].

PropositioN 3.2. Suppose K; is a separable, infinite dimensional,
complex Hilbert space, for i=1,2,+,m. Let n; €N, and let T;€ A, ,,
(&) (r) and r;=1 for i=1,2, -, m. Then

(3.4 @ Tie A (@ &) (),
where r=max{r;|1<i<m} and N=n;+---+n,,.

Proof. Let us denote TZ_@:T,-. Let s>7r and let

(3.5) {{Lelr}1sk<n SO
For a convenient calculation, we correspond {[L;®]}c;cn with
Li;

i<y
{{Le]}1<k<n. Let us denote ¢;=¢r,'¢s. Then it is obvious tlhat ¢; is
an isometric isomorphic weak* homeomorphism from Qs onto Or,
Since ¢,;([L;¥]+) €Qr, and s>r;, for 1<j<n; 1<i<m, there exist
vectors £® and y;® in &;, 1<i<m, 1<j<n; such that
(3. 6a) ¢:([L;®]2) =[P ®y;]r,

(3. 68) me”2§3g}”[Lj(i)]T“, and ||y;@|P<slI[L; 9]¢,
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Now let #=z® @---@z™ and 3;® :@:@@yﬁ"@O@---@O, for
(i—1)
1<j< n;, 1<i<m. Then it follows from Lemma 3.1 and (3. 6a) that
we have
3.7 $:([2Q5;9]1) =[P Ry; ] 1,=¢; ([L;"]4)
since
(3.8) <T [2Q5;9]r>= (T3, 5,%)
= (T 72D, y;®)
=T, ]:x(i)®yj(i)]Ti>, forn=0,1, 2, «--.
Hence [2®5;?]+=[L;®]s. Furthermore, since
3.9 II:EIIZ:iZﬂ ||x(i)|fzgfsémll[Lj(i)]ffl
1<j<n;

and
G100 NF@2=lly; PP <sI[L;PTpll, 1<j<n;, 1<i<m,

we have TEAL N(éﬂt;) (r). Thus the proof is complete.

It is well known that Te A4; ,(%) if and only if for any weak*-
continuous functional ¢; on #y, 0<i<(n, there exist vectors z and Vi
in &, 0<i<n such that

(3.11) 0:(h(T)) = (h(T)x, ;).

Using the above statement, we obtain a sufficient condition for member-
ship in A4, ,.

Tueorem 3.3, Suppose TS A(K) and ncN. Assume that for any %
in XD--DX, there exists a vector z in K such that
e ————

(n)
(3 12") T] (\/Iezofkj) = TI (\/kzOTkx)a
where T=T@®--DT. Then TE Ay,
S————

(n)

Proof. Let {;: 47——C be a weak*-continuous functional, for i=1,
2,...,n. Then it follows from [6, Proposition 1. 7] that there exists
[L]reQr, i=1,2,...,n, such that

(3.13) LR (T))=<r(T),[L]r>, YheH".

Furthermore, since A=A, (cf. [3], [9]), there exist vectors z; and
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¥iin &, i=1,2,...,n, such that [L]r=[2,Qy]p. It is equivalent to
(3.14) GR(T))=(r(T)x;, 3, YheH™, i=1,2, ..., n.
Moreover, we have T'€ A4, , by Proposition 3.2. Since
(3.15) Li(TH = (Tkx;, 3))
= (THz:D0D-®0), (:DOD---D0))

_ (n—1) (n—1)
=T [{zD0D-P0) ® (y:D0D---D0) 17>,
e ——— —_——
(n—1) (n—1)
for i=1,2,...,n, £=0,1,2,..., there exist vectors Z, V. eHXPD DX,

(n)
i=1,2,...,n such that
(3.16)  L(TH=(T*x,3), i=1,2,...,n, £=0,1,2,....
If we set M="/y<;T*z, we get from the hypothesis that there exist a
vector » in & and a unitary operator
(8.17) U:M—>\/ a1 T
such that TU=U(T|%). Hence if we denote v,= UPu#;,i=1, 2, ..., n,
where Py is the orthogonal projection whose range is %, then
(3.18)  (T*, 3;) = (T*z, Pujy) = (Th, U*v)
=(UT*z, v;) =(T*z, vy, for i=1,2,...,n,
£=0,1, 2, ...
According to (3.16), we have
(3.19) L(TH=(T*z,v), i=1,2,....,n, £=0,1,2, ....
Therefore it is obvious that T€ 4,,,. Therefore the proof is complete.

The following example shows that there exists an operator satisfy-
ing the condition (3.12x) in Theorem 3. 3.

ExameLe 3.4. The (forward) unilateral shift operators S of multi-
plicity one satisfies (3.12n) in Theorem 3.3 for any n€N, since S
has a cyclic vector.

Remark 3.5. Since the backward unilater shift S®* of multiplicity
n>2 has a cyclic vector, S®* cannot have the property (3.127) in
Theorem 3.3 for n>2. Hence the converse implication of Theorem
3.3 is not always true.
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4. Cy-operators and the classes 4, ,

Before starting this section, we recall that a set {¢;}o<ic, of vectors
in a Hilbert space & is an n—cyclic set for an operator A in £(X) if
& is the smallest invariant subspace for A containing {e;}oesc,. If T
€£(X) and % is a semi-invariant subspace for 7, we shall write Tn
=Py T|M for the compression of T to %, where Py is the orthogonal
projection whose range is #. If X is a (unbounded) linear transforma-
tion, we write D (X) for the domain of X and ®(X) for the range
of X. Recall that a completely nonunitary contraction T€.£2(%) is said
to be of class C, if there exists € H™, ##0, such that the functional
calculus #(7)=0. The following is an intresting dilation theorem
concerning Cy-operators and the classes 4, ,.

TueoreM 4.1. Suppose T€ A, ,(K) for some positive integers m
and n. Let A be any absolutely continuous contraction on a Hilbert space
K and let AECy. If A possesses an m—cyclic {e1, -em} of vectors in
K and its adjoint operator A* has an n—cyclic set {fy, -, f,} of vectors
in K, then there exist M, Helat(T) with MiD¥ and a closed one—to—
one linear transformation

4.1) X D(X)—mon
such that

(@) the linear manifold D(X) is dense in X and contains {e,, -, ),

(6) the range R(X) of X is dense in MON, and

(¢) AD(X) <D (X) and TyeuXz=XAz for all z in D(X)

(d) Tuer<Cy.

Proof. (a), (b) and (c) follow from [16, Theorem 3.1]. Hence
we shall claim (d). Let us denote T'=Tyey and suppose T'e Co. Then
there exists a bounded analytic function A€ H> such that A(7)=0.
Let p,(A) be polynomials such that p,——4 in H*. Since TXz=XAz
for all z in D(X), we have

4.2) TEXz=XAky
for all z in D(X), #=0,1,2,---. Thus

4.3) a(T) Xz=Xp,(A)=
for all z in @ (X). Moreover, since

4.4) Xp,(A) 2=7p,(T)X2—h(T) Xz (n—>00)
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and since

(4.5) Pa(AD)2—h(A)z (n—>00),
it follows from the closedness of X that

(4. 6) Xh(A)z=h(T) X2

for all z in @D (X). Hence XA(A)z=0 for all z in D(X). So h(A)z=
0 for all z in D(X) because X is one-to-one. Since D(X) is dense
in X, we have h(A)=0. Therefore A=C, and this contradiction pro-
ves the theorem.

We now give two simple propositions before suggesting a conjecture.

ProrosiTion 4.2 [18, Theorem 1]. Let S™ be a unilateral shift of
multiplicity n. Assume that

") S(n) %\,
@7 5¢ ’=<0 E)
Then E€C,.
For a given contraction T in £(%), we recall (cf. [19]) that
4.8) Dr=(I-T*T)*, Dp=(—TT)?
4.9 Dr=Range(Ds), Dr«=Range (D).
(4. 10) dT:dimQ)T, and dT*———dim@T*.

ProrosiTioN 4.3. Let S™ be a unilateral shift of multiplicity n.
Suppose

S(n) *
(n) ~
(4. 1) s >_(0 E)
Then S(”)@EEAn, Ny (1) \An+1,1-

Proof. By Proposition 4.2, we have E€C,. Furthermore, it is easy

to show that dg=dg.<n. According to [16, Corollary 5.4], we get
SWOEE A, x,(1)\A,+1,1. Hence this proposition is proved.

Finally according to Proposition 4.3 and [16, Corollary 5.4], we
can conjecture the following statement.

ConjecTURe 4.4. We conjecture that if B is an operator of class C,
acting on a separable Hilbert space, then we have
(4 12) S(”)@BEA%“O (1)\ An+1,15 ﬂEN.
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