ULTRAPRODUCTS OF LOCALLY CONVEX SPACES

Si Ho Kang

0. Introduction

It is well known that the concept of ultraproducts plays very important role in various branches ([1], [2], [3], [4], [5], [7], [8], [9]). Recently among others, it has been employed to characterize finitely represented Banach spaces in [8].

In this paper, we try to generalize ultraproducts in the category of locally convex spaces.

To do so, we introduce D-ultracolimits.

It is known [7] that the topology on a non-trivial ultraproduct in the category TVec of topological vector spaces and continuous linear maps is trivial.

To generalize the category Ban_1 of Banach spaces and linear contractions, we introduce the category LC_1 of vector spaces endowed with families of semi-norms closed underfinite joins and linear contractions (see Definition 1. 1) and its subcategory, LC_2 determined by Hausdorff objects of LC_1 .

It is shown that LC_1 contains the category LC of locally convex spaces and continuous linear maps as a coreflective subcategory and that LC_2 contains the category $Norm_1$ of normed linear spaces and linear contractions as a coreflective subcategory.

Thus LC_1 is a suitable category for the study of locally convex spaces.

In LC_2 , we introduce $l_{\infty}(I, E_i)$ for a family $(E_i)_{i \in I}$ of objects in LC_2 and then for an ultrafilter \mathcal{U} on I. we have a closed subspace $N_{\mathcal{U}}$. Using this, we construct ultraproducts in LC_2 .

Using the relationship between $Norm_1$ and LC_2 and that between $Norm_1$ and Ban_1 , we show that ultraproducts in $Norm_1$ and Ban_1

Received Feburuary 12, 1990.

This research is supported by Ministry of of Education Grant, 1989.

are exactly those in the literatures.

For the terminology, we refer to [6] for the category theory and to [8] for ultraproducts in Ban_1 .

1. Category of locally convex spaces

Let LC denote the category of locally convex spaces and continuous linear maps between them.

We recall that a topological vector space E is locally convex iff the topology on E is generated by a family of semi-norms on E.

For a locally convex space (E, \mathcal{T}) , let $(d_i)_{i \in I}$ be a family of seminorms on E which generats \mathcal{T} . Then for d_i and d_k in $(d_i)_I$, $d_j \vee d_k$ is again a semi-norm on E. Let $(d_j)_{j \in J}$ be the smallest set of seminorms on E containing $(d_i)_I$ which is closed under finite joins. Then \mathcal{T} is also generated by the family $(d_j)_J$ and hence we may assume that $(d_i)_I$ is closed under finite joins.

DEFINITION 1.1. Let $(d_i)_{i\in I}$ and $(e_j)_{j\in J}$ be families of semi-norms on vector spaces E and F, respectively. A map $f: E \longrightarrow F$ is said to be a *linear contraction* on $(E, (d_i)_I)$ to $(F, (e_j)_J)$ if f is linear and for each $j\in J$ there exists an $i\in I$ such that $e_j(f(x)) \leq d_i(x)$ for all $x\in E$.

It is clear that for any family $(d_i)_{i\in I}$ of semi-norms on a vector space E, the identity map $1_E: (E, (d_i)_I) \longrightarrow (E, (d_i)_I)$ is a linear contraction and that the composite of two linear contractions is again a linear contraction. Now we define a category LC_1 as follows: objects of LC_1 are all pairs $(E, (d_i)_{i\in I})$, where E is a vector spaces and $(d_i)_I$ is a family of semi-norms on E which is closed under finite joins; morphisms of LC_1 are all linear contractions between them. Clearly the category Ban_1 is a full subcategory of LC_1 .

REMARK 1.2. Using the fact that for any $(E, (d_i)_{i \in I}) \in LC_1$, $(d_i)_I$ is closed und er finite joins, one can easily show that LC_1 is finitely complete.

We define $T: LC \longrightarrow LC_1$ as follows: for any $E \in LC$, $T(E) = (E, (d_i)_{i \in I})$, where $(d_i)_I$ is the set of all continuous semi-norms on E and for any morphism f in LC, T(f) = f. Then it is well known

[10] that for any $E, F \in LC$, a linear map $f: E \longrightarrow F$ is continuous iff $T(f): T(E) \longrightarrow T(F)$ is a contraction. Thus T is a full faithful functor. Moreover, T is 1-1 on objects; hence $T: LC \longrightarrow LC_1$ is an embedding i.e., we may consider LC as a subcategory of LC_1 .

THEOREM 1.3. The functor T has a right adjoint and hence LC is bicoreflective in LC_1 .

Proof. Take any $(E, (d_i)_{i \in I})$ in LC_1 . Let \mathcal{T} be the topology generated by $(d_i)_I$. Then $(E, \mathcal{T}) \in LC$, and one can easily show that the identity map $1_E : T((E, \mathcal{T})) \longrightarrow (E, (d_i)_I)$ is the T-couniversal map for $(E, (d_i)_I)$. Thus T has a right adjoint.

COROLLARY 1.4. LC is closed under the formation of colimits in LC_1 .

Let LC_2 denote the full subcategory of LC_1 determined by those objects whose topology generated by the given semi-norms is a Hausdorff topology. It is known [10] that an object $(E, (d_i)_{i \in I})$ in LC_1 belongs to LC_2 iff $(d_i)_{i \in I}$ is total i. e., $d_i(x) = 0$ for all $i \in I$ imply x = 0.

THEOREM 1.5. The category LC_2 is epireflective in LC_1 . Proof. Take any $(E, (d_i)_{i \in I})$ in LC_1 and let $K = \bigcap_{i \in I} d_i^{-1}(0)$. Then K is clearly a linear subspace of E. Let hE = E/K and define $\bar{d}_i : hE \longrightarrow \mathbb{R}$ by $\bar{d}_i([x]) = d_i(x)$ for all $[x] \in hE$. By a simple calculation, \bar{d}_i is indeed a semi-norm on hE and $(hE, (\bar{d}_i)_{i \in I}) \in LC_2$. Moreover, the quotient map $q: E \longrightarrow hE$ is a linear contraction. Suppose $(F, (e_j)_{j \in J}) \in LC_2$ and $f: (E, (d_i)_I) \longrightarrow (F, (e_j)_J)$ is a morphism in LC_1 . For $(x, y) \in \ker(q) = \{(a, b) \in E \times E \mid q(a) = q(b)\}, d_i(x-y) = 0$ for all $i \in I$ and hence $e_j(f(x-y)) = 0$ for all $j \in J$. Thus $\ker(q) \subseteq \ker(f)$. So there exists a unique map $\bar{f}: hE \longrightarrow F$ with $f = \bar{f} \circ q$. It is easy to show that \bar{f} is a linear contraction and hence q is the LC_2 -reflection of $(E, (d_i)_I)$. This completes the proof.

COROLLARY 1. 6. The category LC₂ is closed under the formation of products and extremal subobjects in LC₁.

Let $((E_i, (d_{\lambda})_{\lambda \in A_i}))_{i \in I}$ be a family in LC_1 and let $l_{\infty}(I, E_i) = \{(x_i)\}$

 $\in I\!IE_i$ for any $f\in I\!IA_i$, $\sup_{i\in I} d_{f(i)}(x_i) < \infty$. For each $f\in I\!IA_i$, we define $d_f: l_{\infty}(I, E_i) \longrightarrow \mathbb{R}$ by $d_f((x_i)) = \sup_{i\in I} d_{f(i)}(x_i)$ for all $(x_i) \in l_{\infty}(I, E_i)$. Then $l_{\infty}(I, E_i)$ is a linear subspace of $I\!IE_i$, d_f is a semi-norm on $l_{\infty}(I, E_i)$ and $(d_f)_{f\in I\!IA_i}$ is closed under finite joins. Hence $(l_{\infty}(I, E_i), (d_f)_{f\in I\!IA_i})$ is an object of LC_1 . Under the above notation, one has immediately the following:

REMARK 1.7. (1) For each $\alpha \in I$, the projection map $p_{\alpha} : (l_{\infty}(I, E_i), (d_f)_{f \in \Pi A_i}) \longrightarrow (E_{\alpha}, (d_{\lambda})_{\lambda \in A_{\alpha}})$ is a linear contraction.

(2) If each $(E_i, (d_{\lambda})_{\lambda \in \Lambda_i})$ belongs to LC_2 , then sodoes $(l_{\infty}(I, E_i), (d_f)_{f \in II\Lambda_i})$.

2. Ultraproducts in the category LC_2

In this section, generalizing ultraproducts, we introduce a concept of ultracolimits.

For any ultrafilter \mathcal{U} on a set I, (\mathcal{U}, \subseteq) is a poset and hence it will be considered as a category which will be again denoted by \mathcal{U} .

Definition 2.1. Let A be a category and $\mathcal U$ an ultrafilter on a set I.

- (1) A colimit $((q_J)_{J\in\mathcal{U}}, L)$ of a diagram $D: \mathcal{U}^{op} \longrightarrow A$ is said to de a D-ultracolimit.
- (2) Let $(A_i)_{i\in I}$ be a family in A. Suppose $D: \mathcal{U}^{op} \longrightarrow A$ is given as follows: for $J \in \mathcal{U}$, $D(J) = \prod_{j \in J} A_j$ and $D(J \longrightarrow K) = \prod_{j \in J} A_j \prod_{k \in K} A_k$, where $\prod_{j \in J} A_j$ is the product of $(A_j)_{j \in J}$ in A and $p_{J,K}$ is the projection. Then a D-ultracolimit $((q_J)_{J \in \mathcal{U}}, L)$ is said to be an ultraproduct of the family $(A_i)_{i \in I}$ with respect to \mathcal{U} and we write $L = \prod_{j \in J} \mathcal{U} A_i$ or $\Pi_{\mathcal{U}} A_i$.

The following is now immediate from the definition

Theorem 2.2. If A is a cocomplete category and has products, then A has ultraproducts and hence every topological category and algebraic category have ultraproducts.

Let $((E_i, (d_i)_{i \in I}))_{i \in I}$ be a family in LC_2 and \mathcal{U} an ultrafilter on

I. For any $(x_i) \in l_{\infty}(I, E_i)$ and $f \in II\Lambda_i$, $\{d_{f(i)}(x_i) | i \in I\}$ is bounded in \mathbf{R} and hence $\lim_{\mathcal{U}} d_{f(i)}(x_i)$ exists (see [8]). The set $\{(x_i) \in l_{\infty}(I, E_i) | \lim_{\mathcal{U}} d_{f(i)}(x_i) = 0 \text{ for all } f \in II\Lambda_i\}$ will be denoted dy $N_{\mathcal{U}}$.

Proposition 2.3. N_u is a closed subspace of $l_{\infty}(I, E_i)$.

Proof. By the properties of limits, it is clear that $N_{\mathcal{U}}$ is a linear subspace of $l_{\infty}(I, E_i)$. Take any net $((x_i^{\alpha}))_{\alpha \in D}$ in $N_{\mathcal{U}}$ such that $((x_i^{\alpha}))$ converges to (x_i) in $l_{\infty}(I, E_i)$. Suppose that there is an $f \in IIA_i$ such that $\lim_{\mathcal{U}} d_{f(i)}(x_i) = r > 0$. Then there exists a $\beta \in D$ such that $d_{f(i)}(x_i^{\beta} - x_i) < r/4$ for all $i \in I$. Since $\{i \in I | d_{f(i)}(x_i) > 3r/4\} \in \mathcal{U}$, $\{i \in I | d_{f(i)}(x_i^{\beta}) > r/2\} \in \mathcal{U}$. But $\{i \in I | d_{f(i)}(x_i^{\beta}) < r/2 |$ also belongs to \mathcal{U} , which is a contradiction.

By Proposition 2. 3, we now have the quotient space $l_{\infty}(I, E_i)/N_{\mathcal{U}}$ and we write $(x_i)_{\mathcal{U}} = (x_i) + N_{\mathcal{U}}$ for $(x_i) \in l_{\infty}(I, E_i)$. Moreover, for any $f \in I\!I \Lambda_i$, we define $\overline{d}_f((x_i)_{\mathcal{U}}) = \inf\{d_{f(i)}((x_i) + (y_i)) \mid (y_i) \in N_{\mathcal{U}}\}$. Then \overline{d}_f is clearly a semi-norm on $l_{\infty}(I, E_i)/N_{\mathcal{U}}$ and $(\overline{d}_f)_{f \in I\!I \Lambda_i}$ is closed under finite joins. Since $N_{\mathcal{U}}$ is a closed subspace of $l_{\infty}(I, E_i)$, $(l_{\infty}(I, E_i)/N_{\mathcal{U}}, (\overline{d}_f)_{f \in I\!I \Lambda_i})$ is an object of LC_2 which will be also denoted by $l_{\infty}(I, E_i)N_{\mathcal{U}}$. Using the above notation, we have the following:

THEOREM 2.4. For any $(x_i) \in l_{\infty}(I, E_i)$, $\overline{d}_f((x_i)_{\mathcal{U}}) = \lim_{\mathcal{U}} d_{f(i)}(x_i)$.

Proof. Let $\lim_{\mathcal{U}} d_{f(i)}(x_i) = r$. Take any $\varepsilon > 0$ and let $I_{\varepsilon} = \{i \in I | r - \varepsilon < d_{f(i)}(x_i) < r + \varepsilon\}$. Then $I_{\varepsilon} \in \mathcal{U}$ and for $(y_i) \in N_{\mathcal{U}}$, let $I' = \{i \in I | r - \varepsilon < d_{f(i)}(x_i + y_i)\}$. Then $I' \supseteq I_{\varepsilon/2} \cap \{i \in I | d_{f(i)}(y_i) < \varepsilon/2\} \in \mathcal{U}$ and hence $\sup_{I} d_{f(i)}(x_i + y_i) \ge \sup_{I} d_{f(i)}(x_i + y_i) \ge r - \varepsilon$. So $\overline{d}_f((x_i)_{\mathcal{U}}) \ge r$. Let $z_i = 0$ if $i \in I_{\varepsilon}$ and $z_i = -x_i$ if not. Then $(z_i) \in N_{\mathcal{U}}$. Thus $\overline{d}_f((x_i)_{\mathcal{U}}) = \inf_{(z_i) \in N_{\varepsilon}} (\sup_{d_{f(i)}} (x_i + z_i)) \le r + \varepsilon$. Hence $\overline{d}_f((x_i)_{\mathcal{U}}) = \lim_{\mathcal{U}} d_{f(i)}(x_i)$.

Clearly for $K \subseteq J$ in \mathcal{U} , the projection $p_{J,K}: l_{\infty}(J, E_j) \longrightarrow l_{\infty}(K, E_k)$ is a linear contraction.

Notation 2.5. For a family $(E_i)_{i\in I}$ in LC_2 and an ultrafilter \mathcal{U} on I, let $D: \mathcal{U}^{op} \longrightarrow LC_2$ be given by $D(J \longrightarrow K) = l_{\infty}(J, E_j) \xrightarrow{p_{J,K}} l_{\infty}(K, E_k)$. Then D is a functor. In the following, the D-ultracolimit will be denoted by $\Pi_{\mathcal{U}}E_i$ in LC_2 if it exists.

THEOREM 2.6. In the category LC_2 , $II_{\mathcal{U}}E_i = l_{\infty}(I, E_i)/N_{\mathcal{U}}$.

Proof. Let $q_I: l_{\infty}(I, E_i) \longrightarrow l_{\infty}(I, E_i) / N_{\mathcal{U}}$ be the quotient map, i. e., $q_I((x_i)) = (x_i)_{\mathcal{U}}$. Then by the definition of semi-norms on $l_{\infty}(I, E_i)/N_{\mathcal{U}}$, q_I is an LC_2 -morphism. Take any $J \in \mathcal{U}$ and $((x_i), (y_i)) \in \ker (p_{I,J})$, then for all $i \in J$, $x_i = y_i$ and hence for any $f \in IIA_i$, $\lim_{\mathcal{U}} d_{f(i)}(x_i - y_i)$ =0, so that $(x_i-y_i) \in N_{\mathcal{U}}$. Hence there is a unique linear map q_J : $l_{\infty}(J, E_i) \longrightarrow l_{\infty}(I, E_i)/N_{\mathcal{U}}$ with $q_J \circ p_{I,J} = q_I$ for all $J \in \mathcal{U}$. Take any $f \in \mathcal{U}$ IIA_i and any $(y_j)_J \in l_\infty(J, E_i)$. Let $x_i = y_i$ if $i \in J$ and $x_i = 0$ if not, then clearly $p_{I,J}((x_i)_I) = (y_j)_J$ and one has: $\bar{d}_f(q_J((y_j))) = \bar{d}_f(q_J(p_{I,J}))$ $((x_i))) = \overline{d}_f(q_I((x_i))) \le d_f((x_i)) = \sup_i d_{f(i)}(x_i) = \sup_i d_{f(i)}(y_i) = d_{f(i)}$ $((y_i)_J)$. Hence q_J is an LC_2 -morphism. Moreover, we have $q_k \circ p_{J,K} =$ q_J for all $K \subseteq J$ in \mathcal{U} . Suppose $((h_J)_{J \in \mathcal{U}}, (Y, (e_\alpha)_{\alpha \in H}))$ is a natural sink for D. Take any (x_i) in N_{ψ} . Then for any $\alpha \in H$, there exists an $f \in IIA_i$ such that $e_{\alpha}(h_I((a_i))) \leq d_f((a_i))$ for all $(a_i) \in l_{\infty}(I, E_i)$ Take any $\varepsilon > 0$. Since $(x_i) \in N_{\mathcal{U}}$, there is a $K \in \mathcal{U}$ such that $\sup_{x} d_{f(i)}(x_i) < \infty$ ϵ . Let $b_i = x_i$ if $i \in K$ and $b_i = 0$ if not. Then $e_{\alpha}(h_I((x_i))) = e_{\alpha}(h_K \circ p_{I,K})$ $((x_i))) = e_{\alpha}(h_K \circ p_{I,K}((b_i))) = e_{\alpha}(h_I((b_i))) \leq d_f((b_i)) = \sup_{K} d_{f(i)}(x_i) < \varepsilon,$ so that $e_{\alpha}(h_I((x_i))) = 0$ for all $\alpha \in H$. Since $(Y, (e_{\alpha})_H)$ belongs to LC_2 , $h_I((x_i)) = 0$; hence $N_{il} \subseteq h_I^{-1}$ (0), so that there exists a unique map $\bar{h}: l_{\infty}(I, E_i)/N_{\mathcal{U}} \longrightarrow Y$ such that $\bar{h} \circ q_I = f_I$. Since q_I is onto, \bar{h} is linear. Take any e_{α} in $(e_{\alpha})_{\alpha \in H}$. Then there exists an $f \in \Pi \Lambda_i$ such that $e_a(h_I((a_i))) \le d_f((a_i))$ for all $(a_i) \in l_\infty(I, E_i)$. Take any $\varepsilon > 0$ and any $(x_i)_{\mathcal{U}} \in l_{\infty}(I, E_i) / N_{\mathcal{U}}$. Then there exists a $(y_i) \in N_{\mathcal{U}}$ with $d_f((x_i) + x_i)$ (y_i) < $\overline{d}_f((x_i)_{\mathscr{U}}) + \varepsilon$. Hence $e_{\alpha}(\overline{h}((x_i)_{\mathscr{U}})) = e_{\alpha}(\overline{h}(((x_i) + (y_i))_{\mathscr{U}})) = e_{\alpha}(h_I)$ $((x_i)+(y_i))) \leq d_f((x_i)+(y_i)) \leq \overline{d}_f((x_i)_{\mathcal{U}}) + \varepsilon. \quad \text{Thus} \quad e_{\alpha}(\overline{h}((x_i)_{\mathcal{U}})) \leq \overline{d}_f((x_i)_{\mathcal{U}}) + \varepsilon.$ $((x_i)_{\mathcal{U}})$. Hence \bar{h} is an LC_2 -morphism. This completes the proof.

Let $Norm_1$ denote the category of normed linear spaces and linear contractions between them.

Proposition 2.7. The category Norm₁ is coreflective in LC_2 .

Proof. Take any $(E, (d_i)_{i \in I})$ in LC_2 . Let $F = \{x \in E \mid \sup_i d_i(x) < \infty\}$ and $d: F \longrightarrow \mathbb{R}$ be defined by $d(x) = \sup_i d_i(x)$ for all $x \in F$. By a routine calculation, F is a linear subspace of E and since $(d_i)_{i \in I}$ is

total, d is a norm on F. Let $j: F \longrightarrow E$ be the inclusion map. Then clearly j is a linear contraction. Suppose (X, \overline{d}) is in $Norm_1$ and $f: (X, \overline{d}) \longrightarrow (E, (d_i)_{i \in I})$ is a linear contraction. Since for each $i \in I$, d_i $(f(x)) \le \overline{d}(x)$ for all $x \in X$, sup $d_i(f(x)) < \infty$ for all $x \in X$ and hence $f(X) \subseteq F$. Let $g: (X, \overline{d}) \longrightarrow (F, \overline{d})$ be the corestriction of f to E, then clearly g is a linear contraction and $j \circ g = f$. Since j is 1-1, such a g with $j \circ g = f$ is unique. Thus $j: F \longrightarrow E$ is the $Norm_1$ -coreflection of E.

COROLLARY 2.8. Norm₁ is closed under formation of colimits in LC₂.

For any family $((E_i, d_i))_{i \in I}$ in $Norm_1$, $l_{\infty}(I, E_i)$ is precisely the product $\{(x_i) \in I E_i | \sup_i d_i(x_i) < \infty\}$ of the family in $Norm_1$ and $N_{\mathcal{U}} = \{(x_i) \in l_{\infty}(I, E_i) | \lim_{\mathcal{U}} d_i(x_i) = 0\}$.

Corollary 2.9. The ultraproduct of a family $(E_i)_{i\in I}$ with respect to \mathcal{U} in $Norm_1$ is $l_{\infty}(I, E_i)/N_{\mathcal{U}}$.

Proof. It is immediate from Theorem 2.6 and Proposition 2.7.

We note that Ban_1 is epireflective in $Norm_1$ and closed under formation of coequalizers is $Norm_1$, and that for any family $((E_i, d_i))_{i \in I}$ in Ban_1 , $l_{\infty}(I, E_i)$ in $Norm_1$ (or LC_2) is precisely the product of the family in Ban_1 . Thus one has the following.

Corollary 2.10. ([8]) For any family $((E_i, d_i))_{i \in I}$ in Ban_1 and an ultrafilter \mathcal{U} on I, the ultraproduct of the family in Ban_1 is given by $l_{\infty}(I, E_i)/N_{\mathcal{U}}$.

References

- P. Bankston, Ultraproducts in topology, General Topology and Applications 7(1977), 283-308.
- 2. J. L. Bell and A. B. Slomson, *Models and Ultra products*, North-Holland, Amsterdam, 1971.
- 3. P. M. Cohn, *Universal algebras*, D. Reidel publishing Company, Holland, 1981.
- 4. R. Gurevič, On ultracoproducts of compact Hausdorff spaces, J. Symbolic Logic, No. 1, 53(1988), 294-300.

Si Ho Kang

- S. Heinrich, Ultraproducts in Banach space theory, J. Reine and Alg. Mat. 313(1976), 108-144.
- H. Herrlich and G. E. Strecker, Category theory, Heldermann Velag, Berlin, 1979.
- 7. S. H. Kang, Categories of Topological Algebras, Ph. D. Thesis, Sogang Univ., 1988.
- 8. B. Sims, *Ultra-techniques in Banach space theory*, Queen's papers in pure and applied Math. **60**, 1982.
- 9. J. Stern, Ultrapowers and local properties of Banach spaces, Trans. Amer. Mach. Soc. 240(1978), 231-252.
- 10. A.E. Taylor and D.C. Lay, Introduction to Functional Analysis. 2nd ed. Wiley, New York 1980.

Sookmyung Women's University Seoul 140-742, Korea