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ULTRAPRODUCTS OF LOCALLY CONVEX SPACES

St Ho Kanec

0. Introduction

It is well known that the concept of ultraproducts plays very im-
portant role in various branches ([1], [2], [3], [4], [51, [7], (8],
[9]). Recently among others, it has been employed to characterize
finitely represented Banach spaces in [&].

In this paper, we try to generalize ultraproducts in the category of
locally convex spaces.

To do so, we introduce D-ultracolimits.

It is known [7] that the topology on a non-trivial ultraproduct in
the category T Vec of topological vector spaces and continuous linear
maps is trivial.

To generalize the category Ban; of Banach spaces and linear contr-
actions, we introduce the category LC, of vector spaces endowed with
families of semi-norms closed underfinite joins and linear contractions
(see Definition 1.1) and its subcategory, LC, determined by Hausdorff
objects of LC;.

It is shown that LC; contains the category LC of locally convex sp-
aces and continuous linear maps as a coreflective subcategory and that
LC; contains the category Norm; of normed linear spaces and linear
contractions as a coreflective subcategory.

Thus LC, is a suitable category for the study of locally convex sp-
aces,

In LC;, we introduce l.(I, E;)) for a family (E;);c; of objects in
LC, and then for an ultrafilter % on 1. we have a closed subspace Ny.
Using this, we construct ultraproducts in LC..

Using the relationship between Norm; and LC, and that between
Norm; and Ban;, we show thatour ultraproducts in Norm; and Ban,
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are exactly those in the literatures.
For the terminology, we refer to [6] for the category theory and
to [8] for ultraproducts in Ban;.

1. Category of locally convex spaces

Let LC denote the category of locally convex spaces and continuous
linear maps between them.

We recall that a topological vector space E is locally convex iff the
topology on E is generated by a family of semi-norms on E.

For a locally convex space (E,T), let (d;);c; be a family of semi-

norms on E which generats ©. Then for d; and d; in (d)5 d;\ds
is again a semi-norm on E. Let (d;);c; be the smallest set of semi-
norms on E containing (d;); which is closed under finite joins. Then
T is also generated by the family (d;); and hence we may assume
that (d;); is closed under finite joins,

Derinition 1.1.  Let (d;);er and (e;)jes be families of semi-norms
on vector spaces E and F, respectvely. A map f: E—F is said to
be a linear contraction on (E, (d)y) to (F, (e;)y) if f is linear and for
each j€J there exists an i€l such that ¢;(f(z)) <d;(x) for all z&E.

It is clear that for any family (d;);c; of semi-norms on a vector
space E, the identity map 1z : (E, (d;);)—(E, (d;);) is a linear con-
traction and that the composite of two linear contractions is again a
linear contraction. Now we define a category LC, as follows: objects
of LC; are all pairs (E, (d;);er), where E is a vector spaces and (d)
is a family of semi-norms on E which is closed under finite joins;
morphisms of LC; are all linear contractions between them. Clearly
the category Ban,; is a full subcategory of LC;.

Remark 1.2. Using the fact that for any (E, (d) ) €LCy, (d)); 18
closed und er finite joins, one can easily show that LC; is finitely
complete,

We define T : LC—>LC; as follows: for any E€LC, T(E)=(E,
(d);er), where (d;); is the set of all continuous semi-norms on E
and for any morphism f in LC, T(f)=f. Then it is well known
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[10] that for any E, FELC, a linear map f: E—>F is continuous
iff T(f): T(E)—>T(F) is a contraction. Thus T is a full faithful
functor. Moreover, T is 1-1 on objects; hence T : LC——LC, is an
embedding i.e., we may consider LC as a subcategory of LC,.

TueoreM 1. 3. The functor T has a right adjoint and hence LC is
bicoreflective in LC,.

Proof. Take any (E, (d,);c;) in LC;. Let T be the topology gener-
ated by (d;);. Then (E,T)€LC, and one can easily show that the
identity map 1g : T((E, G))—>(E, (d;);) is the T-couniversal map
for (E, (d;);). Thus T has a right adjoint.

CoroLLARY 1.4. LC is closed under the formation of colimits in
LC,.

Let LC, denote the full subcategory of LC; determined by those
objects whose topology generated by the given semi-norms is a Haus-
dorff topology. It is known [10] that an object (E, (d);ep) in LC,;
belongs to LC, iff (d;);c; is total i.e., d;(x)=0 for all i€l imply
z=0.

Tueorem 1.5. The category LC, is epireflective in LC,.
Proof. Take any (E, (d,)ie;) in LC; and let K= d;71(0). Then K
el

is clearly a linear subspace of E. Let RE=E/K and define d; : hRE—>
R by d;([z])=d;(z) for all [x]€hE. By a simple calculation, d; is
indeed a semi-norm on AE and (RE, (d;);e;)) €LC,. Moreover, the
quotient map ¢ : E——>AE is a linear contraction. Suppose (F, (¢;) jes)
€LC, and f: (E, (d;))) —>(F, (¢;);) is a morphism in LC;. For (z,
vyeker(g) ={(a, ) €EXE|g(a)=q()},d;(z—»)=0 for all i€l and
hence ¢;(f(z—y)) =0 for all j&J. Thus ker(q) Sker(f). So there
exists a unique map f : ARE—F with f=foq. It is easy to show thatf
is a linear contraction and hence g is the LCj-reflection of (E, (d)),).
This completes the proof.

CoroLLARY 1.6. The category LC; is closed under the formation of
products and extremal subobjects in LC,.

Let ((Ei, (d3);e4,))icr be a family in LC; and let I.(J, E;) ={(z,)
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€llE;|for any f€llA;, sup dy (z;) <oo}. For each fell4, we define
4y 1.(I, E) —R by ds(()) =sup ;o (@) for all (e) €L, E).
Then I..(1, E;) is a linear subspace of IE, dy is a semi-norm on /.
(I,E;) and (df)geps, is closed under finite joins. Hence (l.(I, E;),

(df) fens;) is an object of LC;. Under the above notation, one has
immediately the following:

Remark 1.7. (1) For each a1, the projection map p,: (., E)),
(dp) fena;) —> (Eo () 1c4,) is a linear contraction.

(2) If each (E;, (dy)icy;) belongs to LC,, then sodoes (I.(I, E;),
(df)fel]A,-)-

2. Ultraproducts in the category LC,

In this section, generalizing ultraproducts, we introduce a concept
of ultracolimits.

For any ultrafilter % on a set I, (%, €) is a poset and hence it will
be considered as a category which will be again denoted by %.

Dermvition 2.1. Let A be a category and % an ultrafilter on a set I.

(1) A colimit ((gs)sew, L) of a diagram D : U°#—>A4 is said to de
a D-ultracolimit.

(2) Let (A);cr be a family in A. Suppose D : U*——>A is given
as follows: for Je¥, D(J)=[] A; and D(J—K)=[[4 5] 4,

jed jedJ kek
where [| A; is the product of (4;);e; in A and p,; x is the project-
jied
ion. Then a D-ultracolimit ((g;);eqy, L) is said to be an wltraproduct
of the family (A4,);c; with respect to % and we write L=T]44; or
7

A,
The following is now immediate from the definition

TrHEOREM 2. 2. If A is a cocomplete category and has products, then
A has ultraproducts and hence every topological category and algebraic
category have ultraproducts.

Let ((E;, (d)ics,))icz be a family in LC, and % an ultrafilter on
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I. For any (z;)€l.(I, E;)) and felig, {drw (x;) |i€1} is bounded in
R and hence limy dyq;, (z;) exists (see [8]). The set {(z) €l.(, E)
Ilimydye, (z;) =0 for all fFEMA;} will be denoted dy Ny.

ProrosiTion 2.3. Ny is a closed subspace of 1..(I, E)).

Proof. By the properties of limits, it is clear that Ny is a linear
subspace of I.(I, E;). Take any net ((z,%)).cpin Ny such that ( (%)
converges to (z;) in I.(I, E;). Suppose that there is an fefA; such
that limgydy;, (x;) =r>>0. Then there exists a S D such that d iy (2 —
1‘,‘) <r/4 fOI' all iel. Since {ZEIldf(,) (.’I:,)>37’/4} Eﬂ, {iEIldf(i)
(zf)>r/2} €ll. But {i€1|dsy, (2:5)<r/2| also belongs to %, which
is a contradiction.

By Proposition 2.3, we now have the quotient space I.(J, E;) /Ny
and we write (z;)y= (x;) + Ny for (z;) €l..(I, E,). Moreover, for any
SfEIA;, we define dp((x;)g) =inf{dsy ((z) + (%)) | (9) €ENy}. Then
dy is clearly a semi-norm on I.(J, E;) /N, and (df) rens, is closed
under finite joins. Since Ny is a closed subspace of I.(I, E), (I.(,
E;) /Ny, (dy)sens;) is an object of LC, which will be also denoted by
(I, E;) Ny. Using the above notation, we have the following:

THeOREM 2.4.  Forany (z;)€l.(], E)), ds((x) o) =limyd s, (2;).

Proof. Let limyds (z;) =r. Take any ¢>0 and let IL={iel|r—
eldsi (2;)<<r+e}. Then I,e¥ and for (y) €Ny, let I'={el|r—
eldsyy (x;+:)}. Then U210 {ielldsg (v) <e/2} €U and hence
sup driy (x;+y;) ZS}JP drwy (x;+y) 2r—e. So d;((z)y) >7r. Let 2,=0

if i€l, and z;=—z; if not. Then (z;) €Ny Thus dr((z)w) (:inbf, (sup
z)EN,
dra (xi+2;)) <r-+e. Hence ds((z)q) =limydyq, (z;).

Clearly for KCJ in %, the projection p; g : lu(J, E;)——l.(K, Eyp)
is a linear contraction.

Noration 2.5. For a family (E,);c; in LC, and an ultrafilter % on
Prk
I, let D:U*——LC, be given by D(J—K)=LIL.(J, E;)—l. (K,

Ep). Then D is a functor. In the following, the D-ultracolimit will
be denoted by I E; in LC, if it exists.
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THEOREM 2.6. In the category LC, [H4E;=l. (1, E;) /| Ny.

Proof. Let q; : l.(1, E;)——1.(I, E;) / Ny be the quotient map, I.e,,
91((z;)) = (z;)4. Then by the definition of semi-norms on 7., (1, E;) / Ny,
gr is an LCy-morphism. Take any J€¥ and ((z,), () eker (p1.1),
then for all i€J, z,=y; and hence for any felA;, limy deg (x;— ;)
=0, so that (z;—y;) €Ny Hence there is a unique linear map ¢y :
l«(J, E;) —>1..(I, E;) / Ny with gseopr,s=q; for all JeU. Take any fe
f14; and any (v;), €l.(J, E;). Let z;=y, if i€J and z;=0 if not,
then clearly pr,0({z) ) = (s and one has: Jf (g7 () :f?f (gs(pr,g
((x))) =ds(q:((x))) <ds((x)) = sup dr (x;) = sup driy (vi) =dsy
((»)s). Hence g; is an LC,~morphism. Moreover, we have g,op; x=
gy for all KSJ in %. Suppose ((hy) ey (Y, (ex)wer)) 1is a natural
sink for D, Take any(z;) in Ny. Then for any wcH, there exists
an fe[4; such that e, (A;(())) <ds((a)) for all (a;) €l..(I, E;) Take
any ¢>0. Since (z;) €Ny, there is a K€ such that sup driy (2;) <
e. Let b;==z; if i€K and 4;=0 if not. Then ea(h1((2:))) =eqa (hgop;
((x))) =€y (kK"PI, x((8))) =e, (s ((&))) <dy (&) :SUPdem (z;) e,
so that e, (h;((x,))) =0 for all a€H. Since (Y, (e.) ) belongs to
LCy h;i((2;)) =0; hence NyCh;™! (0), so that there exists a unique
map & : l.(I, E;) /Ny;—>Y such that kog;=f,. Since gr is onto, % is
linear. Take any e, in (e,)zey. Then there exists an feni; such
that e, (2;((a))) <ds((a;)) for all (a;)€l1.(I, E;). Take any >0 and
any (2)4€1-(l, E;)/Ny. Then there exists a (y) & Ny with dy((x;) +
(¥)) <67f( (z;) ) +e. Hence €a (h ((z)e)) —€q (E (((xp) + ) w) =e,(hy
(@) +))) <dr((z) + (3) S‘?f((xi>'ll) +e. Thus e, (A ((x)y)) <d;
((z)4). Hence k is an LC,-morphism. This completes the proof.

Let Norm; denote the category of normed linear spaces and linear
contractions between them.

ProrosiTion 2.7. The category Norm, is coreflective in LC,.

Proof. Take any (E, (d);es) in LCy. Let F={z EEE\Stllp d;(x) oo}

and d : F—R be defined by d(z) =sup d;(z) for all z&F. By a
routine calculation, F is a linear subspace of E and since (d;) ;e; is
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total, d is a norm on F. Let j : F—>E be the inclusion map. Then
clearly ; is a linear contraction. Suppose (X, d) is in Normy and f:
(X,d)—>(E, (d));c;) is a linear contraction. Since for each iel, d;
(f(2)) <d(z) for all z€X, sup d;(f(x))<oc for all z&X and hence
SX)CSF. Let g: (X,d)—>(F,d) be the corestriction of f to E,
then clearly g is a linear contraction and Jog=/f. Since j is 1-1, such
a g with jeg=f is unique. Thus j: F—>E is the Norm;—coreflection
of E.

CoroLLARY 2.8.  Norm; is closed under Sormation of colimits in LC,.

For any family ((E, d))):c; in Norm, l.(I,E;) is precisely the
product {(xi)E]]EiISIJIp d;(z;)<oo} of the family in Norm; and N,=
{(z) €l (1, E) |limyd; (2;) =0}.

CoroLLARY 2.9.  The ultraproduct of a family (E,);c; with respect
to U in Norm; is l..(I, E;) / Ny.

Proof. It is immediate from Theorem 2.6 and Proposition 2. 7.

We note that Ban, is epireflective in Norm, and closed under form.-
ation of coequalizers is Norm,, and that for any family ((E,, d,)));e; in
Bany, 1.(I, E;) in Norm; (or LC;) is precisely the product of the
family in Ban;. Thus one has the following.

CoroLrarY 2.10. ([8]) For any family ((Ei, d))) jer in Bang and an
wltrafilter U on I, the ultraproduct of the family in Ban, is given by
l°° (17 El) //NW-
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