THE CONTINUITY OF DERIVATIONS AND MODULE HOMOMORPHISMS*

KIL-WOUNG JUN, YOUNG-WHAN LEE AND DAL-WON PARK

1. Introduction

If T is a linear operator from a Banach space X into a Banach space Y, we let $S(T) = \{y \in Y | \text{there is a sequence } \{x_n\} \text{ in } X \text{ with } x_n \rightarrow 0 \text{ and } Tx_n \rightarrow y\}$ and call it the separating space of T. By Closed Graph Theorem, T is continuous if and only if $S(T) = \{0\}$. A derivation D from a Banach algebra A to a Banach algebra A-module X is the linear map from A to X which satisfies the identity

$$D(ab) = aDb + (Da)b(a, b \in A)$$
.

It is easily checked that S(D) is a closed submodule of X. The continuity ideal for a derivation $D: A \longrightarrow X$ is

$$\Im(D) = \{a \in A \mid aS(D) = \{0\}\}.$$

Clearly $\Im(D)$ is a closed ideal in A. In Section 2, we show that if A is a Banach algebra satisfying some conditions, then every derivation from A to any Banach A-module is continuous. In Section 3, we define the k-differential subspace W_k of X and prove that if $D: C^n$ $[0,1] \longrightarrow X$ is a discontinuous derivation, $F = \{\lambda_1, \lambda_2, ..., \lambda_m\}$ is the hull of $\Im(D)$ and if for some $k, 1 \le k \le n$, $D(z) \in W_k$, then the following are equivalent

- (1) $D(\mathfrak{F}(D)) \subset W_k$,
- $(2) \cap_{i=1}^m M_{n,n-k}(\lambda_i) \subset \mathfrak{F}(D),$
- (3) $D(C^n[0,1]) \subset W_k$.

Also we show that if $D: C^n[0,1] \longrightarrow X$ is continuous and if D(z) is an eigenvector for $\rho(z)$, then D is determined by D(z) such that $D(f) = f'(\lambda)D(z)$, $\lambda \in [0,1]$ and $f \in C^n[0,1]$. In Section 4, we show that if $L(M) = l^1(w)$, then every module homomorphism from M into any $l^1(w)$ -module is continuous, where w is a weight function.

Received February 28, 1990,

^{*}Research supported by the KOSEF grant, 1988-1990.

2. Derivations

We need the following lemmas which is found in [8, 10] to prove our main result.

Lemma 2.1. Let X and Y be Banach spaces, let U be a linear mapping from X into Y, and let T_n and R_n be sequences of bounded linear mappings on X and Y respectively, such that UT_n-R_nU is continuous for all n. Then there is a natural number N such that

$$(R_1 \cdots R_n S(U))^- = (R_1 \cdots R_N S(U))^-, \quad (n \ge N).$$

- Lemma 2.2. Let A be a separable commutative Banach algebra, X a Banach A-module and $D: A \longrightarrow X$ a derivation with the continuity ideal $\mathfrak{F}(D)$. Then D is continuous on $\mathfrak{F}(D)^2$ if $\mathfrak{F}(D)^2$ is closed.
- Lemma 2.3. Let A be a commutative Banach algebra with identity and X a Banach A-module. Let $D: A \longrightarrow X$ be a discontinuous derivation with the separating space S(D) and the continuity ideal $\Im(D)$. Then there is a discontinuous derivation $D_0: A \longrightarrow X$ with the separating space $S(D_0)$ and the continuity ideal $\Im(D_0)$ satisfying
 - (1) $D=a_0D$ for some $a_0 \in A$.
 - (2) For each $a \in A$, either $(aS(D_0))^- = S(D_0)$ or $aS(D_0) = \{0\}$.
 - (3) $\mathfrak{F}(D_0) \supseteq \mathfrak{F}(D)$ and $\mathfrak{F}(D_0)$ is a prime ideal of A.

Christensen [6] has shown that if A is a separable Banach algebra such that A^2 has finite codimension in A, then A^2 is closed.

THEOREM 2.4. Let A be a separable commutative Banach algebra satisfying the following conditions;

- (1) If I is a closed prime ideal of infinite codimension in A, then there is sequences $\{a_n\}$, $\{b_n\}$ in A satisfying $b_na_1\cdots a_{n-1}\notin I$ and $b_na_1\cdots a_n\in I$ for all $n\geq 2$.
- (2) For every maximal ideal M, M^2 is of finite condimension in A. Then every derivation from A into a Banach A-module is continuous.
- *Proof.* We may assume that A has an identity. Suppose that D is a discontinuous derivation from A into a Banach A-module X. By Lemma 3, there is a discontinuous derivation $D_0: A \longrightarrow X$ with the continuity ideal $\mathfrak{F}(D_0)$ which is a closed prime ideal. We claim that

 $\Im(D_0)$ has a finite codimension in A. In fact, if $\Im(D_0)$ is of infinite codimension in A, then there is a subsequences $\{a_n\}$, $\{b_n\}$ in A such that $b_na_1\cdots a_{n-1}\notin\Im(D_0)$ and $b_na_1\cdots a_n\in\Im(D_0)$ for all $n\geq 2$. Let $T_na=a_na$ for all $a\in A$, $R_nx=x$ and $U_nx=b_nx$ for all $x\in X$. Then for each n, $(D_0T_n-R_nD_0)$ $(a)=D_0(a_na)-a_nD_0$ $(a)=(D_0a_n)a$.

Thus $D_0 T_n - R_n D_0$ is continuous for all n. On the other hand $U_n R_1 \cdots R_n S(D_0) = (b_n a_1 \cdots a_n) S(D_0) = \{0\}$.

But

 $U_nR_1\cdots R_{n-1}S(D_0)=(b_na_1\cdots a_{n-1})S(D_0)\neq\{0\}$ for all $n\geq 2$. This is a contradiction to the Lemma 2.1. Therefore $\Im(D_0)$ is a closed prime ideal having finite codimension in A, and so $\Im(D_0)$ is maximal. By the condition (3) $\Im(D_0)^2$ is of finite codimension in A. Christensen's Theorem implies that $\Im(D_0)^2$ is closed. By the Lemma 2.2, D_0 is continuous on $\Im(D_0)^2$. Since $\Im(D_0)^2$ is of finite codimension, D_0 is continuous in A. This is also a contradiction to the discontinuity of D_0 . We complete the proof.

REMARK. The condition (2) of Theorem 2.4 is necessary because if A has a maximal ideal M such that M^2 is not of finite codimension in A, then there is a discontinuous derivation from A into C, the field of complex numbers [11].

3. Derivations on $C^n[0, 1]$

Let $C^n[0, 1]$ denote the algebra of all complex valued functions on [0, 1] which has n continuous derivatives. It is well known that $C^n[0, 1]$ is a Banach algebra under the norm

$$||f||_n = \max_{t \in [0, 1]} \sum_{k=0}^n \frac{|f^{(k)}(t)|}{k!}$$

whose structure space is [0,1] and also $C^n[0,1]$ is singly generated by z(t) = t.

We use the notation

 $M_{n,k}(\lambda) = \{f \in C^n[0,1] \mid f^{(j)}(\lambda) = 0, j = 0, 1, ..., k\}, \lambda \in [0,1].$ These are precisely the closed ideals of finite codimension contained in the maximal ideal $M_{n,0}(\lambda)$ of functions vanishing at λ . A Banach $C^n[0,1]$ -module is a Banach space X together with a continuous homomorphism

Kil-Woung Jun, Young-Whan Lee and Dal-Won Park

$$\rho: C^n[0,1] \longrightarrow B(X)$$
.

Definitions 3.1. Let X be a Banach $C^n[0,1]$ -module. The k-differential subspace is the set $W_k(0 \le k \le n)$ of all vectors x such that the map

$$p \longrightarrow \rho(p') x$$

is continuous for the $C^{n-k+1}[0,1]$ norm on P, where P is the dense subalgebra of polynomials in $C^n[0,1]$

Lemma 3.2. Let X be a $C^n[0,1]$ -module. A vector x lies in the k-differential subspace W_k if and only if the map

$$p \longrightarrow \rho(p) x$$

is continuous for the $C^{n-k}[0,1]$ norm on P.

Proof. We use the elementary inequality

$$||p'||_{n-k} \le (n-k+1) ||p||_{n-k+1}, \quad p \in P,$$

$$\frac{1}{2} ||p||_{n-k+1} \le ||p'||_{n-k}, \quad p \in P \cap M_{n,0}(0).$$

If $x \in W_k$, there exists a constant L > 0 such that

$$\|\rho(p')x\| \le L\|p\|_{n-k+1}, p \in P.$$

Let q=p-p(0), for some $p \in P$. Then $q \in P \cap M_{n,0}(0)$ and $\|\rho(p')x\| \le L\|q\|_{n-k+1} \le 2L\|q'\|_{n-k} = 2L\|p'\|_{n-k}$.

However, such p' exhaust P.

Conversely, suppose that $\|\rho(p)x\| \le M\|p\|_{n-k}$, $p \in P$. Then

$$\|\rho(p')x\| \le M\|p'\|_{n-k} \\ \le (n-k+1)M\|p\|_{n-k+1},$$

so $x \in W_k$.

The k-differential subspace W_k occurs in the work of S. Kantorovitz [9]. Bade and Curtis proved the Lemma 3.2 in the case k=1 [2]. Note that $W_n \subset W_{n-1} \subset \cdots \subset W_0 = X$, and $\rho(p)x \in W_k$ if $x \in W_k$, $p \in P$. A nontrivial derivation $D: C^n$ [0, 1] $\longrightarrow X$ will be called singular if D vanishes on P(equivalently D(z) = 0). A singular derivation is, of course, discontinuous. A derivation D is decomposable if D can be expressed in the form D = E + F, where E is continuous and F is singular. We need the following lemmas which is found in [2].

Lemma 3.3. A derivation $D: C^n[0, 1] \longrightarrow X$ is decomposable if and only if $D(z) \in W_1$. If D is decomposable and D=E+F, then its sing-

The continuity of derivations and module homomorphisms

ular part F vanishes also on $\Im(D)^2$.

Lemma 3.4. If D is a continuous derivation of $C^n[0,1] \longrightarrow X$, then $D(z) \in W_1$ and

$$D(f) = \gamma(f')D(z)$$
 for all $f \in C^n[0,1]$,

where $r: C^{n-1}[0, 1] \longrightarrow B(W_1)$ is a unique continuous homomorphism under $C^{n-1}[0, 1]$ norm such that $\gamma(p)x = \rho(p)x$, for all $x \in W_1$, $p \in P$.

It is well known that if $D: C^n[0,1] \longrightarrow X$ is a discontinuous derivation, then the hull of $\mathfrak{F}(D)$ is finite [2].

THEOREM 3.5. Let $D: C^n[0,1] \longrightarrow X$ be a discontinuous derivation and let $F = \{\lambda_1, \lambda_2, ... \lambda_m\}$ be the hull of $\Im(D)$. If for some $k, 1 \le k \le n$, $D(z) \in W_k$, then the following are equivalent;

- (1) $D(\mathfrak{F}(D)) \subset W_k$,
- $(2) \cap_{i=1}^{m} M_{n, n-k}(\lambda_i) \subset \mathfrak{F}(D),$
- (3) $D(C^n[0,1]) \subset W_k$.

Proof. (1) \Rightarrow (2). Since $D(z) \in W_k \subset W_1$, by Lemma 3.3, D = E + F where E is continuous and F is singular. By Lemma 3.4, D(f) = E $(f) + F(f) = \gamma(f')E(z) + F(f)$ for all $f \in C^n[0, 1]$. If $D(f) \in W_k$, for $f \in \mathcal{F}(D)$, then $F(f) \in W_k$. By Theorem 3.2 in [2], $(z - \lambda_1)^n (z - \lambda_2)^n \cdots (z - \lambda_m)^n \in \mathcal{F}(D)$. Since $\mathcal{F}(D) = \mathcal{F}(F)$,

 $\begin{array}{ll} \rho((z-\lambda_1)^n\cdots(z-\lambda_m)^n)F(f)=&\gamma_1(f')\rho((z-\lambda_1)^n\cdots(z-\lambda_m)^n)F(z)=0\\ \text{for all }f\in \mathfrak{F}(D). \text{ Let }y=&\rho((z-\lambda_2)^n\cdots(z-\lambda_m)^n)F(f), \text{ for }f\in \mathfrak{F}(D).\\ \text{If }\rho(z-\lambda_1)^ly\neq 0, \text{ but }\rho(z-\lambda_1)^{l+1}y=0, \text{ then for any polynomial }p, \end{array}$

$$\rho(p)y = \sum_{i=0}^{l} \frac{p^{(i)}(\lambda)}{i!} (\rho(z) - \lambda_1)^{i}y.$$

And the vectors

$$y, (\rho(z) - \lambda_1) y, ..., (\rho(z) - \lambda_1)^l y$$

are linearly independent. By Lemma 3.2, $\|\rho(p)y\| \le M\|p\|_{n-k}$, M > 0. Therefore $l \le n-k$. Then $\rho(z-\lambda_1)^{n-k+1}y=0$. If we continue this process, for all $\lambda_2, \ldots, \lambda_m$,

$$\rho((z-\lambda_1)^{n-k+1}\cdots(z-\lambda_m)^{n-k+1})F(f)=0.$$

Since $\Im(D)$ is of finite codimension, for all $f \in C^n[0,1]$,

$$\rho((z-\lambda_1)^{n-k+1}\cdots(z-\lambda_m)^{n-k+1})F(f)=0.$$

Thus $(z-\lambda_1)^{n-k+1}\cdots(z-\lambda_m)^{n-k+1} \in \mathfrak{F}(F) = \mathfrak{F}(D)$.

 $(2) \Rightarrow (3)$. Choose $e_k \in C^n[0, 1]$, k=1, 2, ..., m such that $e_k(\lambda) = 1$ in a neighborhood of λ_k and $e_k(\lambda) = 0$ in a neighborhood of $F - \{\lambda_k\}$. Let $e_0 = 1 - \sum_{i=1}^m e_i$. Then

$$e_0 \in \bigcap_{i=1}^m M_{n,n}(\lambda_i) \subset \mathfrak{J}(D),$$

$$D(f) = \sum_{i=0}^m \rho(e_i) D(f), f \in C^n[0,1].$$

Let $D_i(\cdot) = \rho(e_i)D(\cdot)$. Then D_0 is continuous and D_i is discontinuous (i=1, 2, ..., m). We have

$$\text{hull}(\Im(D_i)) = \{\lambda_i\} (i=1, 2, ..., m)$$

and

$$\mathfrak{F}(D) = \bigcap_{i=1}^m \mathfrak{F}(D_i).$$

Suppose $D(z) \in W_k$ and $\bigcap_{i=1}^m M_{n, n-k}(\lambda_i) \subset \mathfrak{F}(D)$. Since $e_j \in M_{n, n-k}(\lambda_i)$, if $i \neq j$,

$$ge_j \in \bigcap_{i=1}^m M_{n,n-k}(\lambda_i)$$
 for $g \in M_{n,n-k}(\lambda_i)$.

Hence

$$\rho(g)D_j(\cdot) = \rho(g)\rho(e_j)D(\cdot)$$

$$= \rho(ge_i)D(\cdot)$$

is continuous. Note that

$$M_{n,n-k}(\lambda_i) \subset \mathfrak{F}(D_j) (j=1,2,...,m)$$
.

Since $D(z) \in W_k$, $D_j(z) \in W_k$ (j=1, 2, ..., m). Thus it suffices to prove the theorem when the hull of $\Im(D)$ is a single point, which we may suppose to be zero. Since $D(z) \in W_k \subset W_1$, by Lemma 3.3, we have D=E+F where E is continuous and F is singular. Since $D(z)=E(z) \in W_k$, $E(C^n[0,1]) \subset W_k$. From $\Im(D)=\Im(F)$,

$$M_{n,n-k}(0) \subset \mathfrak{F}(F)$$
.

So $z^{n-k+1} \in \mathfrak{F}(F)$. For all $f \in C^n[0,1]$,

$$\rho(z^{n-k+1})F(f) = \gamma_1(f')\rho(z^{n-k+1})F(z) = 0.$$

For $f \in C^n[0,1]$, $p \in P$,

$$\|\rho(p)F(f)\| = \|\rho(p(0) + P'(0)z + \dots + \frac{p^{(n-k)}(0)}{(n-k)!}z^{n-k})F(f)\|$$

$$\leq L\|p\|_{n-k}.$$

Thus $F(f) \in W_k$ for all $f \in C^n[0, 1]$, Therefore we complete the proof.

Theorem 3.6. Let $D: C^n[0,1] \longrightarrow X$ be a continuous derivation. Then D(z) is an eigenvector of $\rho(z)$ if and only if $D(f) = f'(\lambda)D(z)$ for some eigenvalue λ . *Proof.* If D(z) is an eigenvector of $\rho(z)$, then $\rho(z-\lambda)D(z)=0$ for some eigenvalue λ of $\rho(z)$. Since for all $p \in P$, $D(p) = \rho(p')D(z) = p'(\lambda)D(z)$, we have

$$D(f) = \gamma_1(f')D(z) = f'(\lambda)D(z) \text{ for all } f \in C^n[0, 1].$$
 Conversely, suppose $D(f) = f'(\lambda)D(z)$ for all $f \in C^n[0, 1]$. Let $p(z) = \alpha_1(z-\lambda) + \alpha_2(z-\lambda)^2$, $(\alpha_1, \alpha_2 \neq 0)$. Then
$$D(p) = \rho(\alpha_1 + 2\alpha_2(z-\lambda))D(z) = p'(\lambda)D(z)$$
 and so $\rho(z-\lambda)D(z) = 0$.

4. Module homomorphisms

Let A be a Banach algebra, X a right A-module and T a module homorphism from A into X. If we make X into an A-module by defining ax=0, $(a \in A, x \in X)$, then T becomes a derivation. Thus if every module derivation from A into any A-module is continuous, then T is continuous. The following lemma is another version of Lemma 3.2 in [12]

Lemma 4.1. Let A be a Banach algebra with unit and X a Banach A-module. If every module homomorphism from X into A^* (regard as a A-module under the dual action) is continuous, then every module homomorphism from X into any Banach A-module is continuous.

PROOF. Let Y be a Banach A-module and $T: X \to Y$ a module homomorphism. If $y \in S(T)$, we can choose $f \in Y^*$ such that $f(y) = \|y\|$ from Hahn-Banach Theorem. Define $R_f: Y \to B^*$ by $R_f(y)(a) = f(ay)$. Then R_f is a bounded linear operator and a module homomorphism because of a dual action. Thus $R_f T: Z \to A^*$ is a A-module homomorphism, and so continuous. Since $y \in S(T)$, there is a sequence $\{x_n\}$ in A such that $\lim_{n \to \infty} x_n = 0$ and $\lim_{n \to \infty} T(x_n) = y$. Thus

$$0 = \lim_{n \to \infty} R_f T(x_n)$$

$$= \lim_{n \to \infty} f(Tx_n)$$

$$= f(y)$$

$$= ||y||$$

and so y=0. Therefore $S(T) = \{0\}$ and hence T is continuous.

A real valued function w defined on $Z^+ = \{n \in \mathbb{Z} | n \ge 0\}$ is a weight

Kil-Woung Jun, Young-Whan Lee and Dal-Won Park

function if
$$w(n) > 0$$
 $(n \in Z^+)$ and if $w(m+n) \le w(m)w(n)$, $(m, m \in Z^+)$.

For convenience we let

$$\begin{split} l^{1}(w) = & \{x = (x(0), x(1), \ldots) \mid \sum_{n=0}^{\infty} |x(n)| \mid w(n) < \infty \} \\ l^{\infty}(w^{-1}) = & \{y = (y(0), y(1), \ldots) \mid \left\{ \frac{|y(n)|}{w(n)} \right\} \text{ is bounded} \} \\ M = & \{x \in l^{1}(w) \mid x(0) = 0 \} \\ Lx = & (x(1), x(2), \ldots) \text{ if } x = (x(0), x(1), \ldots) \in l^{1}(w) \\ Rx = & (0, x(0), x(1), \ldots) \text{ if } x = (x(0), x(1), \ldots) \in l^{1}(w) \end{split}$$

Then it is well known that $(l^1(w), \|\cdot\|)$ and $(l^{\infty}(w^{-1}), \|\cdot\|_{\infty})$ are Banach algebras of power series, where

$$||x|| = \sum_{n=0}^{\infty} |x(n)| w(n)$$

$$||y||_{\infty} = \sup \left\{ \frac{|y(n)|}{w(n)} | n \in Z^{+} \right\}$$

and M is a closed ideal of $l^1(w)$ [4, 5]. But M has neither an identity nor abounded approximate identity. Also $l^1(w)^* = l^{\infty}(w^{-1})$ the duality is implemented by

$$\langle x, y \rangle = \sum_{n=0}^{\infty} x(n) y(n).$$

By Lemma 4.1, if every module homomorphism from $l^1(w)$ -module X into $l^{\infty}(w^{-1})$ is continuous, then every module homomorphism from X into any $l^1(w)$ -module is continuous.

Theorem 4.2. Let w be a weight function. If $L(M) = l^1(w)$, then every module homomorphism from M into any Banach $l^1(w)$ -module is continuous.

Proof. Let X be a Banach $l^1(w)$ -module and let $T: M \to X$ be a module homomorphism. Note that R is a module homomorphism. Since $L(M) = l^1(w)$, $R: l^1(w) \to M$ is a surjective module homomorphism and $||R|| \le w(1)$. By Open Mapping Theorem, $L: M \to l^1(w)$ is a continuous map. Then TR is a module homomorphism from $l^1(w)$ into X. Since $l^1(w)$ has an identity, TR is continuous. If $x_n \to 0$, then $T(x_n) = T(RL(x_n)) \to T(L(x_n)) \to 0$.

By the Closed Graph Theorem, T is continuous.

The continuity of derivations and module homomorphisms

REMARK. If w(n) = 1, then $L(M) = l^1(w)$. If $w(n) = \exp(-n^2)$, then $L(M) \supseteq l^1(w)$. Also if $L(M) = l^1(w)$, then $l^1(w)$ is semisimple [5]. The following corollary is well known.

COROLLARY 4.3. If $L(M) = l^1(w)$ and $T: M \longrightarrow M$ is a multiplier, then T is continuous.

Proof. If T is a multiplier on M, then T is a module homomorphism. By Theorem 4.2, T is continuous.

References

- W.G. Bade and P.C. Curtis, Jr., The continuity of derivations of Banach algebra, J. Funct. Anal. 16(1974), 372-387.
- 2. W.G. Bade and P.C. Curtis, Tr., The structure of module derivations of Banach algebras of differentiable functions, J. Funct. Anal. 28(1978), 226-247.
- 3. W.G. Bade and P.C. Curtis, Jr., Prime ideals and automatic continuity problems for Banach algebras, J. Funct. Anal. 29(1978), 88-103.
- 4. W.G. Bade and H.G. Dales, Discontinuous derivations from algebras of power series, Proc. London Math. Soc. (3) 59(1989), 133-152.
- 5. W.G. Bade and K.B. Laursen, Multipliers of radical Banach algebras of power series, Mem. Amer. Math. Soc. 303(1984).
- J. P. R. Christensen, Codimension of some spaces in a Frechet algebra, Proc. Amer. Math. Soc. (2) 57(1976), 276-278.
- 7. N.P. Jewell, Contity of module and higher derivations, Pacific J. Math. 66(1977), 91-98.
- 8. N.P. Jewell and A.M. Sinclair, Epimorphism and derivations on $L^1(0, 1)$ are continuous, Bull. London Math. Soc. 8(1976), 135-139.
- S. Kantorovitz, The C^k-classification of certain operators in L_p, Trans. Amer. Math. Soc. 132(1968), 323-333.
- R. J. Log, Multilinear mappings and Banach algebras, J. London Math. Soc. (2) 14(1976), 423-429.
- 11. A.M. Sinclair, Automatic continuity of linear operators, London Math. Soc. Lecture Note Series 21(1976).
- 12. G.A. Willis, The Continuity of derivations and module homomorphism, J. Austral. Math. Soc. 40(1986), 299-320.

Kil-Woung Jun, Young-Whan Lee and Dal-Won Park

Chungnam National University Taejon 302-764, Korea, University of Taejon Taejon 300-716, Korea and Korea Institute of Technology Taejon 305-701, Korea