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Abstract (] The formulation of the probabilistic finite clement method was bricfly
reviewed. The method was implemented into a computer program for frame
analysis which has the same analogy as finite clement analysis. Another program for
Monte Carlo simulation of finite element analysis was written. Two sample
structures were assumed and analized. The characteristics of the seccond moment
statistics obtained by the probabilistic finite element method was examined through
numerical studies. The applicability and limitation of the method were also evaluated
in comparison with the data generated by Monte Carlo simulation.
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I. INTRODUCTION

The technology of the finite clement method
has advanced rapidly since the 1950°s. The
method 1s now accepted as the most powerful
technique for the numerical solution of a varie-
ty problems arising in enginecring and science.
In structural mechanics in particular, the
method has been so diversified and generalized
as to cover most of the problems encountcred
in a practical design situation. Many efforts are
still going on to facilitate its application and
also to achieve more realistic modelling of
structural behavior. Most of the developments
in finite element method have so far been
within the category of deterministic analysis,
which premises deterministic structural charac-
teristics and deterministic structural behavior.
In rcality, however, there always exists a
variability and uncertainty in material prop-
erties, load conditions and other factors affect-
ing structural behavior. The  variability and
uncertainty will sometimes be significant
enough to blur the accuracy of the ngorously
sophisticated deterministic analysis. In such
cases, it is more reasonable to present solutions
in probabilistic terms so that it can take
account of the stochastic nature of the structu-
ral characteristics. This fact has motivated the

probability-based method of analysis proposcd
recently under the name of ‘probabilistic finite
element  method’ or ‘stochastic  finite  clement
method’. § The probabilistic finite  ¢lement
method is intended to reflect the variability of
input data to the analysis and to obtamn in-
formation about the variability of the output
from the analysis. For example, in case that the
mean and the standard deviation of the material
properties arc known, the probabilistic finite
element mcethod produces, as output results,
the standard deviation as well as the mean of
displacements and stresses. This is an advan-
tage of probabilistic analysis over the determi-
nistic onc which involves only the mean
values, truncating the additional information.

It is also possible by probabilistic fimite cle-
ment method to cxtrapolate the variability
obscrved in small and simple test specimens to
a large and/or complex structural system. It
suggests that the method can be used to esti-
matc the a priori distribution of structural
strength. The main target of the method is to
estimate the variability of the structural re-
sponse undcr given variability of structural
characteristics, and thus to evaluate the rnisk of
structural failure which is generally expressed
in terms of safety index.

The current probabihistic finite clement

§ The probabilistic finite clement method and the stochastic finite element method are identical one. The term

‘probabilistic’ rather than ‘stochastic’ is uscd in this paper, because current ‘stochastic” finite clement method is
based on second moment statistics rather than full probability distribution functions.
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method has some negative features as well.
The method is in a second moment format,
and therefore, produces no specific information
other than second moment statistics. The
method is derived on the basis of first order

approximation which is higher than the first

order terms in Taylor’s expansion are neg-
lected. Consequently, it’s applicability may be
questionable under the situation of large
variability.

On the other hand, more specific informa-
tion on the probability distribution of structu-
ral behavior may be infered simply by Monte
Carlo simulation. The simulation with finite
element method is not practical, if not infeasi-
ble, chiefly due to prohibitive computing time.
Howcver, the simulation may be used as a
proper tool to calibrate the probabilistic finite
clement method.

In this study, formulation of the probabilistic
finite element method in a second moment
format was briefly reviewed. A computer
program was written to implement and to test
the formulation for lincar analysis. The second
moment statistics of the computed results was
examined through numerical studics. They
were compared with the results obtained from
Monte Carlo simulation. The applicability and
limitation of the probabilistic finite element
method was evaluated on the basis of this
comparison.

II. PREVIOUS WORKS IN PROBABILIS-
TIC FINITE ELEMENT METHOD

In-order to take account of the stochastic
nature in structural analysis, Monte Carlo
simulation was frequently employed (Baratts,
1979, DeBomnis, 1980). Howecver, it required
prohibitive computing timc. This fact might
have stimulated the efforts to embed the trcat-
ment of uncertainty within the finite element
method. Hart and Collins (1970) suggested a
statistical approach based on the linearization of
variations about the mean values obtained from
deterministic  finite  element analysis. The
linearization is understood as a first order
approximation by a Taylor's series expansion
of given functions. They presented some of the
basic principles in the treatment of randomness
in finite element modelling. They verified the
validity of their statistical model by a Monte
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Carlo simulation. Cambou (1975) applied a
similar approach for treatment of uncertainty in
soil or rock mechanics problems. Ingra and
Baecher (1978) applied Hart and Collins’ for-
mulation to a two dimensional finite element
model to study the settlement of foundation
subject to a uniform vertical strip load. Handa

and Anderson’s formulation (1981) was also
based on a similar approach like Hart and
Collin’s. But they expressed the covariance
matrices of the output variables in explicit
forms, and related the analysis results to risk
analysis of structural failure. Hisada and Naka-
giri (1981) applied perturbation technique for
stochastic treatment of finite element method
for two dimensional continuum structures
with uncertainty in structural geometries,

Cambou (1975) suggested treatment of un-
certainty from various sources : uncertainty in
continuum characteristics, load conditions,
boundary conditions and calculation method.
However, hc showed, in a case study, that the
uncertainty in Young’s modulus and load con-
ditions had the greatest influence on the overall
uncertainty which affects the analysis results.
Some of the later works by others (Handa and
Andersson, 1981, Hisada and Nakagiri, 1981,
Ingra and Baecher, 1978) also focused mainly
on the uncertainty in these two factors. Ingra
and Baecher (1978) indicated that trcating Pois-
son’s ratio determimstically simplifies the com-
putation significantly, and showed qualitatively
the relative insensitivity of results to Poisson’s
ratio. Hisada and Nakagiri (1981) considered
the uncertainty in boundary conditions. The
uncertainty in calculation method was neg-
Jected in most of the reviewed literatures.

The random elastic characteristics of each
finite clement are represented by their local
average over the element. Ingra and Baecher
(1978) employed an exponential decay autocor-
rclation function for spatial correlation of soil
properties. Vanmarcke and Grigoriu (1983) in-
troduced the concept of variance function in a
spatial random field, and exemplified its ap-
plication to a stochastic finite element analysis
of a simple beam. Vanmarcke (1981) suggested
a simplified trcatment of the correlation func-
tion of the random material property in terms
of a single parameter called ‘the scale of fluctua-
tion’. He applied the scale of fluctuation to
obtain the covariances and the local averages



over rectangular elements. He also mentioned
the possibility of extending the methodology
to non-rectangular elements.

The probabilistic finite element method is
not so much extensively developed, at present,
as the deterministic ones. This may be partly
due to the difficulties inherent in probabilistic
analysis, and partly due to failure of im-

plementing the method as a useful and practical
tool for probability-based structural design and
analysis. Application of the method has been
restricted to specific research purposes. Pre-
vious works in probabilistic finite element
method have been inclined toward probabilistic
treatment of uncertainty in properties of finite
element and its responses. Not much attention
has been paid to generalization or efficient
implementation of the method in practice. The
method has been restricted to linear elastic
analysis, even though most of the structures,
around failure region, are subject to large de-
formation or nonlinear stress-strain behavior.

III. FORMULATION OF THE METHOD
1. Brief Summary of Finite Element Method

The finite element method can be summa-
rized as a procedure to assemble and solve a
system of simultaneous equations of the form,

(K] {U} = [F 1)

where

{F} =force vector

[K] =stiffness matrix

{U} =displacement vector

The displacement vector is the basic un-
knowns. The force vector and the stiffness
matrix arc obtained by assembling element
nodal force vectors and element stiffness mat-
rices, respectively. An clement stiffness matrix
is determined by integration over the element
domain. That is

[k]=[q (B]"[D] [B]dQ @)

where :

[k] =element stiffness matrix

[B] =strain-displaccment matrix

[D] =constitutive matrix

{2 =clement domain (length, area or volume
of the element)

The matrices [B] and {D] are determined
by structural geometries and material prop-
erties which are given as input data. Load
conditions are also given as input data. Accor-
dingly, [K] and {Fl in the system equation arc
obtained from given information. The system
equation is solved to find the unknown nodal
displacements {Ul. Once the displacement
vector is determined, stresscs at an arbitrary

point within an element are explicitly given by
the stress vector

lal =[D][B] fuf, 3)

because {U| consists of the nodal displacement
vector ful for cach clement. The nodal stresses
are determined after stress smoothing pro-
cesses.

2. Probabilistic Finite Element Mcthod

In probabilistic finite element method, all or
part of the inputs are considered to have prob-
abilistic nature. Those input variables which
are probabilistic are defincd as mnput random
variables. In a second momgrnt approach, not
only their means but also their variances and
covariwnces are given as input data. The output
variables, namely displacements and stresses
also inevitably have probabilistic nature and
thus are defined as output random varables.
Thereforc, the variances and the covariances as
well as the means of the output random vari-
ables should be obrained from the analysis.

Random variables, cither nput or output,
can be decomposcd into the deterministic part
and the probabilistic part. Suppose that input
random variables compose a random vector
X} = XXX, )", where n is the total num-
ber of input random variables. The ith input
random variable X; is decomposed into the
deterministic part X; and the probabilistic part
¢ X,. That is

X =X{+ 8 X, (i=1,",n) 4)

The value of any random variable evaluated
at X;=X;(v1) 1s also defincd as the determinis-
tic part of the random variable, and is denoted

. . S
with superfix . For example, [K”] and [%‘]

represent the deterministic parts of the stiffness
matrix and of its derivative, respectively. By
such definition of {F“l, [K*] and {U“}, the
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relation
(KUl = {F} (5)

is equivalent to the system equation of deter-
ministic analysis.

Qutput random variables, namly {U} and
lg} can be expanded about their deterministic
values as follows :

U =101+ 5 oy %ax
+22’W9—X*6X5X+

lof = lq“i+zi lax
+ Z%aXaXiBXSX-l- (6)

Neglecting higher than first order terms,
equations (6) can be simplified into the follow-
Ing matrix notations.

Ut = iU°l+[
lat = fq‘”H-[

]iaxl
]iaxf )

where [aX] and [ ] will be defined

later. Equation (7) leads to first order approxim
ation. The mean of displacements is approxim
ated as

{#uf =E[{U}]={U° @)

which is equivalent to the deterministic part of
the displacement vector. The covariance matrix
of displacement is given by?

[“U]ZE[([{JUf—i/‘U} )a([lJUi-i/‘u})T]
=[_8T] [ox] [W]T .(9)

where [ ¢ ] denotes covariance matrix of in-
put random variables, which is also given as
input data. Thus, the problem is reduced to

U
that of evaluating [—g-)-(-‘] Differentiation of

equation (1) with respect of each of the input
random variables leads to

(25 U K] S =12 0

where ['3)(—] should be distinguished from
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u, . . '
[—g—)—(— in equation (9). Rearranging the

equation, one obtains

K] gt = ot - 25T ay
Let

P = 25 25 U1

Then,

(K] oy F 12)

Equation (12) 1s in the same form as the
system equation (1). The right hand side of the
equation can be determined explicitly after get-
ting {U°f from equation (5). It is noted that all
of {8U/@X;} can be obtained by solving
equation only once, because [K] does not
change. The matrix [@U/ 8 X] consists of all
set of {8U/3X;}. That is,
au ,aU, ,oU

] [ , L ]
t X f %, 8X } a13)

5

Once the moments for displacement are
obtained, the mean and the covariance matrix
of stress is determined through similar proce-
dure. They are respectively

{# ) =1{a°t=[D°] [B°] {U°} (14)
and

[0 =[5 [0 J 25T (15)

Here, [ 8q/9X] is again an assembly ofia_q'

0 X,

oxl=lant ot 2511 ae)

where {9q/dX;} are obtained simply by dif-
ferentiating cquation (3).

o =2 ]BNW%{M[ Hm

+mm§% 17

If the random vanable X, denotes matenal



property, [9B/3X;] vanishes, and equation

(17) becomes,
| l*[ ][B] {Ut +[D] {B !

(18)

On the other hand, if X, is associated with load

conditions, both [#D/8X;] and {8U/ 383X
vanish, and the relation is reduced to

H2L

o X,
where {0U/3X;} is already obrained from
equation (12).

The above formulation is in a generalized
form. The equations include a number of dum-
my operations, and [8K/9X;] and {8F/o
X;t are sparsely populated. It is an important
subject for probabilistic finite element method
to develop a systematic approach to save com-
putational efforts and storage requirements in-
volved in evaluating {9q/2X] and [2U/9
X]. It is also crucial to obtain [3K/8X,] in
pararell with [K]. As for 19F/0X}, the
previous studies have been restricted to the case
of concentrated nodal loads. In this study,
distributed loads as well as loads between
nodes were treated as random variabels. In
actual finite clement analysis of continuum
structures, the distributed load may be cvalu-
ated by work equivalent formulation. In this
case, the work cquivalent nodal loads should
be treated probabilistic in accordance with the
formulation. In addition, probabilistic man-
ipulation of stress smoothing should be de-

=01 (B -2 19)

vised.

3. Monte Carlo Simulation of Finitc Element
Analysis

Probability distribution of structural be-
baviors may be infered by Monte Carlo
simulation. Data sets of input random vari-
ables such as material properties and load con-
ditions are generated by random deviators of
assumed probability distribution functions. The
finite €lement solutions to each of the data sets
produce samples of output random wvariables
such as displacements and bending moments,
from which their probability distribution or
second moment statistics can be constructed.

In this study, the random deviates were
primarily generated using IMSL library func-

tions. However, the library functions do not
include the random deviate generator for the
cxtreme type 1 distribution applied to load
conditions. Thercfore, uniform deviates were
generated and transformed into extreme type [
deviates, as shown in Fig. 1, using the cumula-
tive distribution function of extreme type I
distribution.

IV. IMPLEMENTATION

The finite clement method, either determu-
nistic or probabilistic, is practical only by the
usc of a computer. Accordingly, computeriza-
tion is an essential part of the method. Com-
puting time and storage requirement for the
method are inevitably significant, and therfore
their minimization is very important. For cx-
ample, the matrices [0 ] and [84q/9X] in
equation (9), and [2U/9X] in cquation (15)
takc up huge amount of storage space. Owing
to the independence between certam variables,
these matrices can be properly partitioned, and
the non-zero entries can be stored economical-
ly. There is also a possibility of storing these
matrices in out-of-core meniory. Evaluation of
the right hand side of equation (11) is cspecially
time consuming. Most of the null operations
can bc avoided considering the relavonship
between variables.

The probabilistic finite clement method for
linear analysis cxecuted in the following sequ-
ence :

1) Read input data:the structural geomcet-
ries, material properties and load condi-
tions are given as input data, or generated
from a chosen correlation function.

2) Compute the elemcent stffness matrices
and the element nodal force vectors (de-
terministic).

3) Assemble the global system cquations
{deterministic) into a compact onc dimen~
sional array.

4) Obtain deterministic nodal displacements
by solving the system equations.

5) Compute the first derivative of the stiff-
ness matrix and force vector with respect
to random variables.

6) Obtain derivatives of the displacement
vector by solving again the system cqua-
tions with the samc left hand side and
modified right hand side.

7) Compute the cxpected values and the
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covariance matrix of the nodal displace-
ments.

8) Compute the first derivative of the strain-
displacement matrix and the constitutive
matrix with respect to random variables.

9) Compute the expected values and covar-
iance matrix of stresses.

10) Print the computed results.

The Monte Carlo simulation of finite ele-
ment analysis proceeds in the following sequ-
ence :

1) Generate random deviates for mput ran-

dom variables.

2) Convert the random deviates into physic-
al values.

3) Assemblec the global system equations,
solve them, and obtain output random
variables.

4) Generate a sequence of output random
variables by repeating 1)-3) for a given
number of samples.

5) Establish the probability distribution or
the second moment statistics of output
random variables from the gencrated
valucs.

The computer programs for probabilistic fi-
nite clement analysis and for Monte Carlo
simulation were independently written, and
their computing times werc compared under an
equivalent computing environment,

V. NUMERICAL STUDY

The validity and the applicability of the
probabilistic finitc element method was ex-
amined through numerical studies with two
test cases as shown in Fig. 2. The subjects of
investigation were the horizontal displacement
at node 3 and the bending moment at node 5 of
member 3 in smaple structure I, and the vertic-
al displaccment and the bending moment at
node 5 of member 2 1n smaple structure II. In
the first part of this numerical study, the
characteristics of the second-order statistics
obtained from probabilistic finite elecment
method were examined. The second part was
intended to evaluate the limitation and the
applicability of the probabilistic finite element
method in comparison with the statistics from
Monte Carlo simulation.

1. Characteristics of the Second-order Statistics

from Probabilistic FEM

The second moment statistics were generated
by the probabilistic finite element method for
the following three cases :

—when Young’s modulus of each member is
random and all the other input variables
are deterministic.

—when applied loads are random and all the
other input vartables are deterministic

—when both Young’s moduli and applied
loads are random and all the othcr input
variables are deterministic

Sample structure | and II were analized re-
spectively for all the above threc cases. But the
general tendency of the second-order statistics
for both sample structures turned out to be
almost identical. Thus, the characteristics of the
second-order statistics are presented here in
terms of sample structure I only.

a. Case of Random Young's Modulus

The Young’s modulus of ecach member was
assumed to be random with a uniform coeffi-
aent of variation. Equal correlation between
Young’s moduli is also assumed.

Fig. 3(a) shows the relationship betwecen the
variability of Young’s modulus and that of
displacement. The linearity in the relationship
is due to linearization expressed by equation
(7). The actual relationship may not be linear
as will be shown by Monte Carlo simulation.
The slope increases as the correlation increases,
and rcaches 453” when the correlation become
unity. Fig. 3(b) shows the relationship betwcen
the variability of Young’s modulus and that of
bending moment. In contrast to the casc of
displacetnent, the slope decrcases as the correla-
tion increases. The variability  in bending mo-
ment vanishes when the correlation becomes
unity. It agrees with the cxpected actual be-
havior.

b. Case of Random Applied Loads

Applied loads are assumed to be random and
equally correlated with uniform coefficient of
variation. Fig. 4(a) and (b) shows respectively
the relationship between the variability of ap-
plied loads and that of displacement and be-
tween the variability of applied loads and that
of bending moment. In this case, the slope
increases with increasing correlation for both



displacement and bending moment. As shown
in the figures, the correlation has less effect in
comparison with the case of random Young'’s
modulus.

¢. Case of Random Young’s Modulus and

Random Applied Loads

Fig.5 shows the same relationship as pre-
vious ones for the case in which both Young’s
moduli and applied loads are random. The
relationships are not linear in this case, In most
cases, the variability of applied loads is much
greater than that of material properties. The
figure implies that the effect of the corrclation
between material properties may not be signifi-
cant for those cases.

The above numerical study shows that the
computed results of the probabilistic finite ele-
ment analysis are reasonable in general and
give some information on the overall tendency
of output random variables. But the specific
values of the second moment statistics may
deviate, to some degree, from the actual prob-
ability distribution, as was investigated in the
following numerical study.

2. Comparsion with the Results from Monte
Carlo Simulation

First, the stability of Monte Carlo simulation
was examined to estimate the minimum num-
ber of samples required for reliable compari-
son. Fig. 6 and Fig. 7 shows that at least 1000
simulations arc required to obtain stable solu-
tions for both displacements and bending mo-
ments. Thus 1000 samples were used for all the
comparisons.

The relationship between the variability of
Young’s modulus and that of output variables
were obtained and compared with the pre-
viously obtained results by the probabilistic
finite clement method. In the first case, the
Young's moduli are assumed to be independent
random variables while other input variables
are deterministic. In Fig. 8, the results obtained
from normally distributed and lognormally dis-
tributed Young's moduli are compared with
the probabilistic finite element solutions. The
difference between Monte Carlo simulation
with normally distributed Young’s modulus
and the probabilitic finite element solution
rapidly increases as the c.0.v. of the Young's
modulus exceeds 0.3. Furthermore, when the

co.v. is taken larger than 0.3, negative
Young’s moduli were generated within the
range of 1000 samples, which disable the prog-
ram. On the other hand, the probabilistic finite
element analysis agrees well with the simula-
tion with lognormally distributed Young's
modulus, even for relatively large vanation of
young’s modulus. Such a tendency is common-
ly observed in both displacement (Fig. 8 (a)
and (¢) ) and bending moment (Fig. 8 (b) and
(d)). This suggests partially the validity of the
probabilistic finite element method for large
range of variability in material properties, be-
cause the material properties are usually
assumed to be lognormally distributed.

In the second case, the applied loads are
assumed to be independent random variables,
and all the other variables to be deterministic.
Fig. 9 shows comparisons between probabilis-
tic finite element method and the simulation
with normally distributed and extreme type [
distributed applied loads. The probabilistic fi-
nite element method agrees quite closely with
the simulation with extreme type I distnibuted
loads for all levels of varability.

Lastly, the means obtained by the simulation
and the probabilistic finite element method
were compared as shown in Fig. 10. Probabi-
listic finite element method produces only one
single value of mean regardless of c.o.v., while
the simulation indicates that the mean varies
depending on the c.o.v.

The computing time for Monte Carlo
simulation with 1000 samples was around 300
times greater than that of probabilistic finite
element analysis.

VI. CONCLUSIONS

The results obtained from the probabilistic
finite element method are reasonable in gener-
al, and give some information on the overall
tendency of output random variables. In most
cases, the second moment statistics generated
by the method agrees well with the counter-
parts by Monte Carlo simulation for both
mean and variance of the displacement and the
bending moment. Particularly, the method
gives a solution quite close to the simulation
when the Young’s moduli are assumed to have
lognormal distribution, or when applied loads
are assumed to have an extreme type | distribu-
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tion. However, the deviation of the probabilis-
tic finite element solution from Monte Carlo
simulation is significant in casc of normally
distributed random Young’s modulus with
high c.o.v. Therefore, the mcthod 1s not
directly applicable in this case. For such cir-
cumstances, the method should be revised on
the basis of second order approximation rather
than the current first order approximation. Still
the current mecthod may be applicable for a
large range of variability m material properties
as well as in load conditions, because the
material properties and the load conditions arc
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