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Lateral Vibration and Elastic Stability
of Rectangular Plates with Cutouts
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Abstract

Two perforated plates(a square plate and a rectangular plate having an aspect ratio 1.57(L, =11, L=

7)) are taken as analysis examples. Each of these plates is given some changes in the boundary condi-
tions. The size of cutouts as well as their locations are also changed in order to examine the variation
of two eigenvalues corresponding to the fundamental mode. The relationship between two eigenvalues

Is established by changing the magnitude of edge thrust.

INTRODUCTION

Two eigenvalues, the elastic critical load and
the natural frequency of thin homogeneous rec-
tangular plates, can be determined separately by
classical methods, that is, by solving the governing
differential equation or by substituting appropriate

deflection functions into the total potential energy
function. The relationship between cirtical load
and natural frequency can also be established by
classical methods. The classical methods are not
always successful, however, even with the classical
boundary conditions (i.e., ideally hinged or com-
pletely fixed). That is true, of coursé, with the
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Lateral Vibration and Elastic Stability of Rectangular Plates With Cutouts

plate having an inner cutout as shown in Fig.
3.

The difficulties in such cases can be solved by
one of the numerical approaches ; especially finite
element analysis provides a powerful tool to attack
the problems. L.G. Tham et al.[1] achieved some
successful results of eigenvalue analysis of square
plates with cutouts by using the negative stiffness
method. The aim of this paper is to examine the
variation of the eigenvalues and their relationship
of the plates with cutouts and various edge con-
ditons using the finite element method.

BRIEF REVIEW OF CLASSICAL METHODS

When the rectangular plate shown in Fig. 1 is
in the form of uniform thin thickness and without
cutouts, the following expression[2, 3] can be used

to determine two eigenvalues

<gx?+zaggy +gyw>
< xg’;:+m6;c;>

Where
D=flexural rigidity of the plate=Eh*/12(1— %)

p=Poisson’s ratio(in this paper #=0.3)
w=displacement in the z—direction

m=mass per unit area of the plate.

Fig. 1. Rectangular Plate under Edge Thrust without Cutouts

If one wants to apply the energy principle for
determining the eigenvalues of the above plate,
the following expression(4,5] is usually adopted ;

U ff ax2 +2p§;_%¢;+
+(3w) +o(— m(%f]

o) 35t ety

The static critical load N,, or the natural freq-
uency (without edge thrust) w, can be obtained
from Eq.(1) or Eq.(2) by omitting the 3, /0t term
or the dw/d 1t term respectively. Some of the
results can be found in Refs.[6—9].
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Fig. 2. Variation of Frequencies with Edge Thrust of the
Simply Supported Plate

When the natural frequency @ under edge
thrust N is required, Eq. (1) or Eq.(2) is effective
without omitting the dw/d1 or the dw/0x term
respectively. When the four edges of plates are
simply supported, the relationship between the
two eigenvalues is easily obtained. Fig. 2 shows
their relationship[10], which indicates that the
square of the frequency of lateral vibration is
exactly linearly related to the edge thrust inters-
ecting each axis at unit value. It is not difficult
for the simply supported beam —column to prove
this linearity[11]. The first author{12] showed that
approximate linearity also holds for the other
beamn — column with various end conditions (see
Fig. 9 below).
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As mentioned above, the authors’ primary aim
is to establish the relationship of the two funda-
mental eigenvalues of the plate shown in Fig.
3. In other words, the plates with varying edge
conditions will be examined to see whether or not
the same linearity shown Fig. 2 holds. The loca-
tions and shapes of holes are to be examined for
the influence on the relationship between two
eigenvalues.

Fig. 3. Rectangular Plate with a Cutout

NUMERICAL METHOD

The finite element used here is a rectangular
element with corner nodes. The typical element
chosen in this work is shown in Fig. 4. The deg-
rees of freedom at any node i are deflection w,and
rotations ¢ (=9Jw,/ dy) and ¢,(= 9w/ dx). The-
refore, the element has a total of 12 degrees of
freedom.

The coefficients of the Eq.(3), 4,, 4, -, Ay, can
be represented by 12 degrees of freedom of the
element.

W=A,+ A x+ A+ A X"+ Asxy+ A"+ 4:5°
3

F APy + Aoxy i+ Ay + Auxy+ Apxy
Representing 4, by the nodal displacements,

Eq.(3) takes the following form

W=[N] {6} )
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(a) plate dimension

i Bui(= o/ By)
—X

(b) nodal displacement
Fig. 4. Rectangular Element

Where [N] is the shape function and {6} is the
diplacement vector of an element. Information
about the shape function [N] and the procedures
how to get the element flexural stiffness matrix
[k,]the geometric stiffness matrix (k] and finally
the consistent mass matrix [m] can be found in
several references [13—16]. So these procedures
are completely omitted here.

Once the stiffness and mass matrices of an
element are known, they can be assembled for
the whole plate. After the boundary conditions
being considered, the final form of the finite
element equation for the eigenvalue analysis takes
the following form

A= M ] (A ®)

wher [K,] and [K,] are assembled flexural and
geometric stiffness matrix respectively, [M_] is
assembled consistent mass matrix and {A} is the
displacement vector of the whole plate. By letting
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M =[0] in Eq.(5), one gets the static critical load.
With N =0, similarly one gets the natural frequ-
ency of a plate.

The solution procedures (or solution algorithms)
are well described in the several texts[17 —19] as
are the element stiffness or the mass matrix.

NUMERICAL EXAMPLES

It is generally known that the element division
is a very important factor in the numerical ana-
lysis. Fig. 5 shows the reducing errors with incr-
easing number of elements. One can see that the
natural frequency (without edge thrust) @, conv-
erges more rapidly to the exact value than the
static critical load N, does. Fig 5 also shows a
common trend that the results of the plate with
the simply supported edges are more convergent
than those of the plate with fixed edges.

Because of computing time and CPU capacity,
the square plate is divided by 9x9=81 elements
and the rectangular plate by 7X11=77 elements.
In both plates the element form is square. Fig.
6 shows the element divisions of each plate.
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(a) Square Plate

(b) Rectangular Plate
Fig. 6. Element Divisions and Locations of the Cutouts
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Fig. 7(a). Variation of Static Critical Loads of the Square Plate
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Fig. 7(b). Variation of Static Critical Loads of the Rectangular Plate
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Fig. 8(a). Variation of Natural Frequencies of the Square Plate
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Fig. 8(b). Variation of Natural Frequencies of the Rectang-

ular Plate
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Fig. 9. Variation of Frequencies with End Load of Prismatic
Bar

The cutout is made to change its location and
size as shown in Fig. 6 to check its influence on
the resulting eigenvalues. In this paper, a hole is
assumed to be formed when the thickness of the
plate at that location is relatively very thin(1/10
00) compared to that of the other part of the plate.

Two eigenvalues corresponding to fundamental

mode, the static critical load N, and the natural
frequency (without edge thrust) @, are given by
Fig. 7 and Fig. 8 respectively. k, in Fig. 7 and
k, in Fig. 8 stand for the coefficients of following

EXPressions.

D _fe (D yy
No=k7w o= ()

1

In Fig. 7 and 8 "“none” means that there is no

“_n

cutout in the plate and “a” means there is only
one square hole in the palte at the site indicated
by Fig. 6. Similarly, “edf” means a rectangular
opening at the central part of the palte.

The expression f=0.7 or f/=0.3 in Fig. 7 or Fig.
8 denotes Kinney's[20] edge fixity f. In other
words, the plate is partially fixed at that edge.
For example, the plate edge with f=(.3 will have
end moment which is 0.3 times the end moment
which would exist if the edge were completely

fixed. At this time the plate edge will rotate 0.7

(=1-—0.3) times the end rotation which would
occur if the edge were the ideal hinge. Thus “f/=
0.0" means an ideal frictionless edge, while “f=
1.0" corresponds to the completely fixed edge.
Works similar to Fig. 7 and Fig. 8 are found in
Refs.[21 —25].

On the basis of the results of Fig. 7 and Fig.
8 the relationship between two eigenvalues is

established by calculating the corresponding values
of @/w, through changing N/N, values. The
calculations are depicted in Fig. 10 and Fig. 11.
In Fig. 10 and Fig. 11, “+a” is a square hole at
the left corner and “# dce” indicates a rectangular
opening at the center part of the rectangular plate
as is seen in Fig. 6.

RESULTS AND DISCUSSIONS

Eigenvalues of thin perforated plates are eva-
luated. The perforated plates are conf.ved to a
square plate and a rectangular one with aspect
ratio 1.57(L,=11, Ly=7). To check the i.fluence
of perforation on eigenvalues, some cla. .,es of
the size of the cutouts and their locations are
made In each plate.

The coefficient k,, static critical load N,,, has
two general trends. First, &, decreases when the
size of cutouts increases without relation to bou-
ndary conditions. Second, it also decreases when
the distance of cutouts from the center of the
plate decreases with some exceptions. The coef-
ficient k,, natural frequency w,, is influenced by
boundary conditions. That is, in the case of simply
supported square plates, k, shows similar phene-
mena to k,. While in the case of fixed square
plates, it shows the opposite phenomena to k,.

The variation of natural frequencies of each
plate is examined by changing the magnitude of
edge thrust, which reveals the relationship betw-
een two eigenvalues. In the case of square plates,
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the square of the frequency of lateral vibration
is approximately linearly related to the end load
without regard to the edge supporting conditions
and cutout variations (its sizes and locations). In
the case of rectangular plate, however, the rela-
tionship between the two eigenvalues shows some
deviation from linearity, except the simply supp-
orted plates. The relationship for rectangular plates
with other boundary conditions tends to be par-
abolic.
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