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ABSTRACT

Let {X.: =1, 2, -} be iid random variables with distribution Py, 6=® where @ is some
abstract parameter space. We consider a sequential confidence interval I for the mean p=pu(0) of
P, satisfying Po(u€D>1—a and Pe(u—8(ED<P for all 8=® for any given an imprecision real
valued function 8(p)>>0 and error probabilities 0<<a., B<1.

A one-sided sequential confidence interval is constructed under some restriction on the family
{Po: 6E®} and the imprecision function &. This is extended to the two-sided case.

1. Introduction

We study sequential procedures for constructing one-sided and bounded sequential confidence intervals
for the mean of a distribution in the presence of nuisance parameters.

Sequential experimentation may arise naturally such as in medical trials or may be necessary to
achieve the desired precision no matter what the values of the unknown parameters are.

Let {X,: n=1, 2,---} be iid random variables with distribution Ps, 8=®. Let the mean p= u(e)
of P, be the parameter of interest, the rest of 6 to be regarded as a nuisance parameter. Any confidence
set (CS) to be considered will be subject to two requirements. The first concerns the coverage probability
condition i.e. for any given 0<<a<1,

P(peCS)>1—a for every 6@, (1.1

The second requirement concerns the precision of the confidence set, which can be specified in
various ways. For example, fixed-width confidence intervals in the univariate case (e.g., Setein(1945)
or Chow and Robbins(1965) or minimum risk function(e. g., Wolfowitz(1950)).

In this study, the precision of the confidence sets will be controlled or partly controlled by requiring
that with high probability the confidence set does not contain one or more specified parameter values
different from the parameter u of interest. In the simplest case u is real valued and there is given
an imprecision function 5(u)>>0 and a probability 0<B<1 such that

Pp—8(n) €CS <P for every 0@. 1.2

This will be called “B-protection at p—38(w), and was first proposed as a measure of precision by
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Wijsman(1981).
A B-protection of the form(1.2) leads to a confidence interval of the form

CI=(LX,,, Xv), ©)

Where L is some measurable function of the stopped sequence of random variables when employing
a stopping time N. If in (1.2) u—8(p) is replaced by u+8(y), then the appropriate CI has the form
(=, L(X;-, X»). Both situations will be called one-sided. In constrast, a two-sided situation
arises if (1.2) is replaced by

Po(u=8(WECS or u+8(WCS)<B for all 0=@.

This will be called “B-protection at u+5(y). In this case the appropriate CI has the form (L.(X,, -,
XN), Lz(Xh"', XN))-

In the case of no nuisance parameters several studies were done. Wijsman(1982, 1983) treated
the mean of a N(y, ¢ population with known o, and of £/ ¢ for unknown ¢ with procedures restricted
to be scale invariant and Juhlin(1985) studied the mean of a scale parameter exponential distribution.
Furthermore Wijsman(1985) studied the one-parameter problem in a rather general setting. This was
generalized to vector valued parameters by Fakhre-Zakeri(1987). The purpose of this study is to extend
these ideas to problems where nuisance parameters are present.

In this paper we assume that {P,: 0=®} is the family of all univariate distributions P, such that
E, [(X~u(6))./5(8)]* is bounded uniformly in ©, where X~Ps and o*(0) =VarX.

The imprecision function & is chosen either constant or & is strictly monotonic and §(p) — 0 as n
— —o plus several smoothness conditions. The case 8(wW) — 0 as y—> o, not treated in this paper,
is similar. Also the case 8(p) = 0 as M+ could be handled by the methods presented here. In
all these cases, § is not bounded away from 0 there is no fixed sample size confidence interval satisfying
(1.1) and (1.2) even if y and & were the only unknown parameters, so that a truly sequential procedure
is mandatory.

Throughout this paper, p(8) and o(p) will abbreviated 1 and o respectively unless specified.
We define

|
X~
M=

1 " —
X si= n—1 Z X—X.)? for n>2.

1

~

N
Z=&~w/o i=1, 2, Z=

Wi M

Z: so that Z,=(X,—p) /o
1

1 n _
s%= n—1 E} (Zi=Z.)% so that s*.=¢./ &, for all n>>2

a(C, 0)=P(u&D : B(C, 0)=P(p—8(WED
@@={6c@: o(0)=0c}, @y, 0)={6=® : pu(@® =y, o(0)=g¢}

and uniformity in 6 will usually be abbreviated “u.i.8”.

2. Sequential Confidence Intervals of Constant Precision

In this section we propose and examine a procedure which satisfies (1.1) and (1.2) with &8(w =d,
where d>>0 is fixed.
Define a stopping rule as

N=N©O)=infln>2: n>cs,) 2.»
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I=[Xx—pd, «) (2.2)
in which 0<p<(1 is still to be chosen (e.g., p=z." (zt2)).
Lemma 2.1 For arbitary given 6.>0, Nc%6?—>1 a.s. as C—> o u.i. 8 if c(8) >oc..

Proof. By Chow and Robbins (1965, Lemma 1), N—> a.s. as c—>® u.i. 8 if 6(8) >0, and
by definition of N,

S'ZNSNC'20'2<S 2t 1/ 6%

We can easily show that s%, s%;—>1 a.s. as c—>© u.i. 8 if 6(8) >0, under the assumption of
Py and 1/ ¢%6°<1/c%%—>0 as c > © u.i.8 if 6(8)>c0.

Lemma 2.2 Nc*%?—>1 a.s. as 02> © u.i. 6=@(o) for any given c>0.

Proof. We can easily show that N—> @ a.s. as 6> © u.i. 0E®(c). So the proof is similar
to that of Lemma 2.1.

Theorem 2.3 For any given a, B, p(0<a, B, p<<1) there exists co>0 such that for ¢>c the
sequential procedure defined by (2.1) and (2.2) satisfies (1.1) and (1.2).

Proof. We will prove the theorem in two parts.
(1) Part 1: There exists 6o>0 such that a(c, 8)<a, B(c, 0)<B u.i.0 if c(8)<ls, for all c>0.
Proof of Part 1. Observe that

ale, 0)=P(Zy>pd/ o) and Blc, 8)=P(Zy<-d(1—p)/ o)
Let t=min (pd, (1—p)d) and e=min(a, B) then
ale, 0)<P(Z\ >t/ o) and Blc, 8)<PLZv<—t/ o) for all ¢ and 0.

Since Z.— 0 a.§. asn—> © u.i. 0. So there is a constant a>0 such that Py{Z,<la, n=1, 2,-}>1—¢
for all 8. Hence Po{Zx>>a}<e no matter what the stopping time N is. If we choose co=ta, then
Po( | Zu | >t/ 0)<e u.i. 8 if 5(8)<co.

(2) Part 22 For given 6.>0, there exists c.>0 such that a(c, 8)<a, Blc, 8)<B for all cc
u.i. 0 if 5(8)>co.

Proof of part 2. We will prove a(c, 8) and B(c, 8) >0 as c > u.i. 8 if 6(8)>c.. Observe
that

ale, 0)<Py(v/NZy>cpds'y) (2.3)

The right-hand side of (2.3) goes to 0 as ¢ = © u.i.8 if 5(8) >a, by the fact that v/NZx is asymptotica-
lly standard normal and therefore stochastically bounded as ¢ — «© u.i.0 if 6(8)>c, and cpdsx —> ©
a.s. as c—> o u.i.f.

Similarly Blc, 0)<Po(y/NZy<—(1—p)desy) =0 as c—> © u.i.8 if 6(8) >c0.
If we combine part 1 and part 2 we get ¢ such that alc, 8)<la, plc, 8)<B for all c>c u.i.
0.

Theorem 2.4 For any fixed ¢>0, as 6 2> o alc, 6) > 1—®(cpd), Blc, 8) = 1—D(c(1—p)d)
u.i. 6@(o).

Proof. Write a(c, 8) and B(c, 0) as follows
ale, 8)=Py(y/NZy>+/Npd/ o)

and

Al OYX—DC /N7 o — AT — N /<N
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fixed ¢>0 and +/Npd/c > cpd, —y/Nd(1—p). p> —cd(1—p) as 6= ©. u.i. 0€®@(c) for
any fixed ¢c>0. Therefore a(c, 8) and B(c, 8) converge to 1—®(cpd) and ®(—c(1—p)d) respectively.

The extension of Theorem 2.3 to the two-sided case is immediate. Now a confidence interval of
the type [Xy—pd, Xx+ pd] with B-protection at p+d is needed. This may be achieved by the intersection
of [Xx—pd, ®) obtained according to Theorem 2.3 with a and B replaced by a.”2, B.”2 respectively
and (—w, Xy+pd] obtained by the analogue of Theorem 2.3. for such intervals, also with a.”2,

B 2.
3. Sequential Confidence Intervals of Variable Precision Function

Now we study a sequential procedure with B-protection for a non-constant precision function & where
8. R—>R".
We shall make the following assumption about 8.
Assumption A *
(D 0<8(x)<L for all xR, for some 0<L<e, and 8(x) >0 as x—> —

(ii) & is differentiable and 0<8'(x)<<M for all xR for some 0<<M<eo

(ii) 8(x+y)/8(x) =1 as y— 0 uniformly in x

(iv) for any given £>0, B>0, 0<¢<1, there exists xo such that
(I1+e) 8(x)—8(x+B/(6(x))N>0 for all xx.

Lemma 3.1 For any given a>b>0, 0<{¢<1 and B>>0 there exists x* such that
[8(x+B./ (8(x))) —8(x) 1"/ [ad(x) —bd(x+B./ (8(x))) *<1/b* for all x<x".

Proof . Consider the identity

v¥L8(x+B/(6(x))) —8(x) I~ [ad(x) —b8(x+B/ (8(x))%) J*
=—(a—b) 5() [(a+6)8(x)—208(x+B/(8(x))9)]

valid for all x and & Now in Assumption A(iv) put e=(a+b),/2b—1 and choose x, according to
A(Giv). With x*=x, we have then that (a+b) 8(x) —2b8(x+B./(8(x)))>0 for all xx".

A reasonable stopping time N may be proposed as

N=N@=mfln>2: n>d%./ (X)), >0 (3.1
and our terminal decision rule is the confidence interval
I:E)—(N"“DS(XN), ) (3.2)

with p(0<<p<<1) to be chosen.
Throughout this Section, we partition the parameter space into three disjoint regions. For arbitrary
given d>>0 and o* >0
A={8€0 : 0<c(0)<dd(u(0))}
A=1{0€0 o*>ds(u(6))}
As={0€0®  o(8)>c*} and define No=c%*/5*(w)

with [x] will be meant the greatest integer not exceeding x.

Thoerem 3.2 If § satisfies Assumption A, then for any given a, 8, p(0<a, B, p<< 1) there exists
¢>>0 such that with the stopping time (3.1) and confidence interval (3.2) for the mean yu, (1.1)
and (1.2) are achieved for all c>c..

Before proving the theorem, we need the following lemmas.

Tamma @2 2 82(0) 2 /S22 demZ Y31 a0 @ ac ~—> e 11 3 O—=A._
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0 <A..

Therefore 6Zy—> 0, s%— 1 a.s. as ¢ © Uu.i. 8&A. The Lemma holds, by Assumption A(iii)

Lemma 3.4 Lemma 3.3 is valid with N replaced by N—1.

Proof : The proof of Lemma 3.3 is unchanged when replacing N by N—1 since s — 1, 6Zn1—> 0
a.s. as c>© u.i. 0€A..

Lemma 3.5 N/N;—1 a.s. as ¢c>®© u.i. 0€A..

Proof . By definition of N the following double inequality on NN, holds.

5 (W5 &+ pZw) <N/ No<& (s, 8 (ut0Zn.)
+&(w /&

By Lemmas 3.3, 3.4 and (0.6’ <1/c’d* >0 as c>®© u.i. 0S4, the Lemma hold.
Lemma 3.6 N—> o a.s. as c>®© u.i. 0€As.

Proof . Define a new stopping time N, as follows ;

N.=Nil¢e, O)=infln>2. n>cc’s%/L*}.
Then N,<N since & is bounded by L. Since N,—> o a.s. as ¢ > u.i. 8<=A;, so does N.

Len.ma 3.7. For arbitrary given ¢ (0<<e<{1) Po{N>(1+&)No} >0 as c > u. i.0 A,
Proof . By definition of N in (3.1)

Po(N>(I+e)No) =Pol/05(X,) <cs'» for all n<(1+€)No}

<P v/10(8(u+0Zn) —5(1)) Leosn,—+/m0 5(W} 3.3)
where no=[(I+¢e)No].

Write 8(u+0Zn) — () =8(Va)oZw where | Va,—p | <| 6Zn,| . Observe that no>(1+e)No— 1=c%?
/8% () [1+e—8 )./ ?6’]. Hence the right-hand side of (3.3) can be written as

Po{ /165 (V) 6Zn, o5/ nd (W} <

Po{/75 (V) Zo<lel1+e/3— (1+e—8(w)./ o)1}

+ Po{sn,>1+e/3}.

Observe that no—> © as ¢ —> © u.i.0<As. Therefore sn,— 1 a.s. and /noZn,—> N(0, 1) as ¢ =
wi.0 A, Define ei(c, 0)=1+e/3— (1+e—8(w)./cc? Then elc, 6) <0 for sufficiently large

¢ uniformly in 8 €A; and also ce; = — as ¢ —> © u.i.0& As. Since & is bounded above by M, cer” 8 (Vi)
> —w as c—>© u.i.8cA,. Therefore Po{sn>1+e/3} >0 as ¢ > © u.i.0A..

Lemma 3.8 For arbitrary given £(0<e<<1), m, 6*>0, as c—=> 0 P{N<(1—¢&)No} >0 u.i. 6
€{0e® : pO)>w o8)>0"}.

Proof .

Po(NS(I _S)No)

<Po|n&(X,) > s%, for some 6"/ L'<n< (1—¢) Ny}
+ Pofs%<1 ¢}

<P(n&(X) > (1~e/2), for some n<(1—e)No}

+Plst<1—¢&/2, for some n>cc*/L?} +Pols*v<l—e}.
Put A:={0€0@ . u®) >, c(B)Zc’t}. _
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0 as c> o u.i. 0= A; and therefore in A..
On the other hand
Po{n&X,) >E”(1—€/2), for some n<(I1—¢)Ny}
LPAn(&(X.) — (W) > (1—5./2) —~n&* (),
Jor some n<(1—¢e)N,}. 3.4
Write 8*(X.) —8%(w) =28(V.)8'(V.)oZ., where | Vo—p | < | oZ, | .
Thus the right-hand side of (3.4) is equivalent to
Po{2n8(V,)8'(V,)oZ, > (1—£./2) —n&* (1),
Jor some n<(1—¢)N,}
<P max | nZ, | >cce/ 4LM)}<I6L*M*(1—¢) /

n<(1-e)Np

(& (W) — 0 as c—> © u.i. 0=A,.

Corollary 3.9 For arbitrary given w, ¢*>0, N/No—>1 as c> o w.i. 0S{0€0: u(0)>po
o(8)>c*}.

Proof . The corollary follows immediately from Lemmas 3.7, 3.8.

Lemma 3.10 Let 0<e<1, 6*>>0 and 0<¢<1 be given. Define Nw=c6%"(8())%. Then there
exists u* such that P{N<(1—e)Nw} >0 as c> @ u.i. 8eA={0€0: u(®)<p*, o(®)>c"}.

Proof . Write 8Cu+o0Z.) —8() =8(V.)6Z,, where | V.—u| <o0Z.. Then

Pe(Ng(l —S)Noo)

<Po{n&(X) >E*(1~¢/2), for some n<(1—e)Nu)

+Pols%<1—e/2, for some n>cc’/ L} + Po{s?v<1—¢}. (3.5)
As in the proof of Lemma 3.8,
Py{s%<1—e/2, for some n>c’c>/ L2} +Ps{s%<1—¢} > 0asc—> o u.i. 0=As. Next we must prove
that the first term of right-hand of (3.5) goes to zero as ¢ = © u.i. 8 A; where u* will be determined
later. Write the first term of right-hand side of (3.5) as

Po{n (8 (p+0Z,) =8 (W) > (1—¢,/2) —n&(w),

Jor some n<(1—¢g)Nw}. (3.6)
Observe c’o’(1—¢.2) —nd*(W>c*o’e. 2 for all n<(1—¢) N and <o, where po=sup{p : 8(W)<1}.
For {8€@: u(@<u} (3.6) is less than

Poin((pu+oZ)~8(w) (8(u+oZ)+8(W)>cc%./ 2,

Jor some n<(1—€)Ny}.
By the monotonicity of 8 (Assumption A(i)), (3.7) is equal to

P(n(3(ptoZ.) —8(w) (8(u+oZ,)+5(w)

=>ce’e/ 2, 2,20, SV)LGW):, for some n<

(1—=&)Nw} +Po{n(8(u+0Z,) —8()) (8(u+oZ,)

+3(W)>de’e 2, Z,2>0, §(V,)>(6(w)?,

Jor some n<(1—&)Ny}. (3.8)

The first term of (3.8) is less than

NIl 7~ 9 Al sl ~t NN\ rxe \ . s

3.7
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since 8(u+o0Z.) —8(w) =8(Va)0Z,<(8(w))%6Z, and 8(u+ oZ.) +8(n)<2L. _
In the second term of (3.8) &(V.)>(8(w))* and Z,>0 imply 0<oZ.<L/(8(n))*since L>8(u+ oZ.)
—5(=8(V.) oZ and also §(u+0Z.) +5(w) =28() +8(Va)0Z,<26(p) +MoZ, since &<M.
<M.

So the second term of (3.8) is less than
Po{n(8(u+L/ (3(w)H —8(w) (25(w) +MoZ,)
>dc’e/ 2, for some n<(1—&)Nw)
=PlonZ,>K/M, for some n<(1—¢)Nw} 3.9

where K=c%%.72[6(u+L./(6(1))») —8(w 1—2n8(w.
But for {8€0 : u(0)<p} and n<(1—&)Nw

K>cct{e/ 206(u+ L/ (6(W)*) —8(w1—2(1—2)./8(w}
Pt (4—3e) 8(w) —4(—e) S(utL /(W)Y _
=20 8(utL 6G)) 5w = o’/ 28(WR, say.

Then by Lemma 3.1 and Assumption A(iv), there exists po such that R>4(1—¢) for all p<px.
So define p*=min{p, pw}. Then for all {60 @ u(O)I<p'} (3.9) is less than

Pl max |\ nZ,| >2¢6(1—¢e)/ MW}

n<(I-¢&)Ngg
<M8(w) / 2cto(1—e)) T (1—€)Nw
<M/ (4(1—e)) =0 as c—> .

Lemma 3.11 For arbitrary given o* >0 there exists pu* such that 6Z,—> 0 a.s. as ¢c—>®© u.i.
0<As, where As is defined in Lemma 3.10.

Proof : Let u*, Nw be the same as defined in Lemma 3. 10. Define vy=min{k . positive integer,
26>(1,/2)}. Then for arbitrary given £>0.

Po{ ‘ GZN | >8} g_Pe{Ng(I _E)Nw} +P9{N>(1+8)Na}

+ )2 PAN=j, |oZ | >}
AD<<U+INy
+3 ( = PAN=j, |oZ | >e})
m=1 Alm+D<j<Alm)
+ > P{N=j, 1 oZ;| >¢} (3.10)

(1-eINpg<j<A(y+1)

where A(m)=c2c52/(6(}1))“/2’m'l
For any given 0<a<b,

T PAN=j, |oZ | >e)<Plmax | iZ; | >ae/0)<(c./ae).
a<j<p a<j<lb

Thus the third term on the right-hand side of (3.10) is less than (1+¢)/c*’. Similarly the fourth

and fifth term on the right-hand side of (3.10) are less than v./c%? (8(w)* /¢’ (1—¢)” respectively.
Thus

Pe( | 0’ZN‘>8)£P0(N£(1_8)N00) +P9(N>(1 +8)No)+(1+8+¥)/€282
+ B2/ cg(1—e)*—>0 as c > © u.i. 0EA,

since Po(N<(1—&)Ng) +Po(N>(1+&)No) >0 as c—> @ u.i. 8<As by Lemmas 3.8 and 3.10.
Lemma 3.12 Lemma 3.11 is valid after replacing N by N—1.
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X PN=j, (Z,] >e)<P( max | G—DZu | >ela—1)./0)
a<j<b a<j<s
<(c/ela—D)b= (c/ae)’ ) /(1—1,/a)>.

So for any given >0

Py( | 6Zys | &) <Py(NK(1—€)Now) + Po(N>(I+e)N) +[ (1 +e+y) /e
+ @2 E2(1—e)1/(1— (WA FcD? >0 as ¢ = ®© u.i.
0€A; since 1—GB(W)2/FF—>1 as c—> ®© u.i. 0S4,

Corollary 3.13 For arbitrary given 8°>>0, there exists pu* such that NNy 1 in probability as
¢ u.i. <As, where As is defined in Lemmma 3. 10.

Proof . s%, s%.—>1 a.s. as ¢ ®© u.i. 6 A; and therefore in As since As is a subset of As.
Also by Lemmas 3.11, 3.12 and Assumption A(iii), §*(p),/8*(u+0Z.,) and §*(p) ./ 8*(u+8Zx.) converge
to.l a.s. as ¢ © u.i. OEA..

Proof of Theorem 3.2

First we will show that there exists d>>0 such that a(c, 8)<a, B(c, 8)<B for all 8 if §(6)<<d5(u(6)),
¢>0. Using confidence interval (3.2),
ale, 8)= Po(ZN>D§(}.l+O'ZN)/G)
=PO(Z_N>98(}1+ O'ZN) /o, ZN>0)
<P(Zy>p8(w)/6) by Assumption A(ii) (3.1D

and

Ble, 8)=Pe(Zy<(pd(u+oZv) —5(w)./ )
=Po(Zy<(p8(u+0Zy) —6(W) /5, Zy>0)
+Py(Zv<(pd(utoZv) —86(w) /o, Zv<0) (3.12)

If Zx>>0, write 8(u+0Zy) =8(w) +8'(VW)oZv<8(n) +MoZn, where | Vi—u | <oZy, if Zv<0, 8(u+
-~ 6Zn)<8(y) by the monotonicity of 5.
Therefore (3.12) can be bounded above either by
Po(Zy> (1= p)8(w) / (pM—1o) +P(Zy<—(1—p)8(w) /&)
if pM—1>0
or by
P(Zy<(I—p)8(W)./0) if pM—1<0.

] min(p, 1—p) if pM—1<0
Define 1= { min(p, (I—p), I—p)./ (pM—1)) if pM—1>0
Then for all c>0, 0

ale, 8)<Po(Zy>t8(w) ./ o) (3.13)
and

Ble, <P | Zy | >t8(w). ) (3.14)

Deéfine e=min(a, B). Since Zy—0 a.s. as n—> ® u.i. O there exists a constant @ >0 such that P,
(FZy | >a)<e for all 0@ no matter what the stopping time N is. If we choose ¢=t 6(u),” o, then
(3.13) and (3.14) are less than ¢ for all 8 if 6(8)<t/a8(1) Sn we fale et /a
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Pe( IZN' >t8(].1)/0) :P()( I \/NZ’VI >t\/N8(]J)/0') (3. 15)

Since /N Zy is stochastically bounded as ¢ = @ u.i. 8 if 6(8)>d8(u(8)) and t /N 8(u)./c=t(N/N
DV NV2 8(p)o=ct(N/N)V*—=> o a.s. as c> o u.i. 0 if 6(8)>d6(u(8)) by Corollaries 3.9,
3.13 and Lemma 3.5. Thus (3.15) goes to 0 as c—> o u.i. 8 if 6(8)>ds(pu(@)).

The extension of Theorem 3.2 to the two-sided case is immediate as in Section 2.

Theorem 3.14 For any given ¢ >0, and 6 >0, as u—~>—o, alc, ) > 1—®(pc), plc, 6) > 1— (¢
(I1=p)) u.i. 0€0(y, o), where the sequential procedure is defined by (3.1) and (3.2).

Proof : (I(C, 9)=Pe(\/NZ_~>\/N 95(H+GZN)/G)

and
Bc, 8)=Py(y/NZy<y/N(p8(u+oZy) —8(w). o)

We can easily show that \/NZy—> N(0. 1) as y—~> — u.i. 6 €0(y, o) for any given c>0, >0
and also /N pd(p+oZy)/o=(N/N)? ped(u+0Zs)./5(w) = pc a.s. as p—> —o w.i. 0=O(y,
o) for any given c./N(pd(utoZy) —8(w). o= —c(1—p) a.s. as p—> — u.i. 00y, o) for
any given c>0, c>0.

Remark 3.15 For any given p and ¢0, as 6 —> «© alc, 8) and b(c, 6) may not have limiting
values for the sequential procedure defined by (3.1) and (3.2). Furthermore N./N, does not converge
in probability to a constant.
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