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ABSTRACT

In this paper we study the properties of nonparametric tests for testing the null hypothesis of
no change against one sided and two sided alternatives in scale parameter at unknown point. We
first propose two types of nonparametric tests based on linear rank statistics and rank-like statistics,
respectively. For these statistics, we drive the asymptotic distributions under the null and contiguous
alternatives. The main theoretical tools used for derivation are the stochastic process representation
of the test statistic and the Brownian bridge approximation. We evaluate the Pitman efficiencies
of the test for the contiguous alternatives, and also compute empirical power by Monte Carlo simula-
tion.

1. Introduction

In the past few years there has been an increasing interest in the problem of detection a possible
change in the distribution in a sequence of random observations. For example, they may be a sequence
of rates of return per unit time from an investment, or a series of deviations from the target level
observed from a quality control process. In these cases, constancy of the variance is important, and
the shift of the variance occur at a unknown time point is often something of great practical concern.

Let X,, X -5 Xy denote a successively observed sequence of independent random variables, and
let X; have a continuous cumulative distribution function (cdf) Fi(x), i=1,--*, N. We assume that
there exist a unknown cdf F such that

F&)=F{&—w. o}, i=1,, N, &)

where p and o; are unknown, —oo <p<w, 6,>0.
The null hypothesis of the test is given by

Hy . 6:="=0o~v=0 (2)
and the alternative by
H, . 6;=""=0:s=0p Cw;="" =0ny=0otT7 (3

where k(I=k<N—1) is an unknown integer.
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Many authors have studied procedures for statistical inferences about change point problems such
as detecting a shift in either location or scale parameters and estimation of the change point. The
earliest general attempt to treat this problem was made by Page(1954, 1955). He proposed a nonparame-
tric approach for testing hypothesis about single change point in location of distribution using cumulative
sums(CUSUMS). Sen and Srivastava(1975) considered several tests using maximum likelihood statistics
for detection change in mean with the normality assumption. Hapkins(1977) proposed a likelihood
ratio test for the alternative of a location shift and found its distribution under the null hypothesis.

For nonparametric approaches, Bhattacharyya and Johnson(1968) drived the locally best invariant

rank test for the distributions which are continuous and symmetric about the shift. Pettitt(1975) proposed
a parametric test using a version of the Mann-Whitney statistic. Wolfe and Schechtman(1984) compared
various nonparametric tests by Monte Carlo simulation. )

A new approach using Brownian bridge process was proposed by MacNeill(1974) and Lombard(1983).
MacNeill derived the test statistics using the method of Chernoff and Zack(1984) with the assumption
of exponential type distribution and showed that the large sample distribution of the test statistic under
th null hypothesis or alternatives is that of a functional on Brownian motion. Lombard extended the
MacNeill’s results to some class of rank statistics using the weak convergence theorem.

For the change point problem of scale parameter, Hsu(1977, 1979) suggested some procedure in
case of normal and gamma distribution and applied these statistics to the analysis of stock market
returns and air traffic flows. Talwar and Gentle(1981) proposed simple test based on Pettitt’s test
which is robust for heavy-tail distribution. Finally, Hsieh(1984) drived a class of rank tests suitable
for the scale shift problem without specifying relation between observations and their ordering.

2. Nonparametric Tests for a Change in Scale Parameter
2-1. Test Statistics Based on Linear Rank Statistics
Let X;, X; -, Xy be independent random variables such that X; have continuous cdf Fi(x) given

in (1). And let R;, R ", Rx denote the corresponding ranks.
We are interested in two sample rank statistics with sample sizes k and N-k defined by

N
SBY= £ aulR)— & Z, aulR) @
i=1 =
where ax(1),:*, a~(N) are scores generated by a function ¢(u), 0<u<1,
ax(@) =E(o(Ux?")), I1<i<N (5)

with Uy denoting the i-th order statistics in a sample of size N from the uniform distribution on (0,
1.

We consider the null hypothesis H, and the alternatives H, in (2) and (3). Since th integer k is
an unknown change point, we must think about a new alternative in this case. This may be the union
of the alternatives for the (N—1) two sample problems. Thus we propose two types of test statistics
which are suitable for testing the null hypothesis H, against new alternative K=U oy Hee

First, we define the sum-type statistics. Chernoff and Zacks(1964) use these statistic to test null
hypothesis in Bayesian setup. Bhattacharyya and Johnson(1968) considered this type of statistics for
testing the change point problem with nonparametric approach. These are given by

.1 -1
Lv= 3 o - (A'N)2Sa(k) (6)
k=1
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As a particular case in sum-type statistics, if the weights vv(k) are (N—1)" for all k, then statistic
Ly is identical to Hsieh’s(1984) statistic.

Second, we consider the max-type statistics. Sen and Srivastava(1975) proposed a rank statistic
similar to maximum likelihood statistic used in testing change point in parametric model. Here, we
can generalize their statistics by

My= mar  wek) - (AN)ZSu(k) ™
I1<ESN-1

where the weight wx(k)’s are nonnegative weight functions.

2-2. Test Statistic Based on Rank-Like Statistics

Most of the nonparametric distribution-free tests are based on rankings of observations in independent
random sample from continuous distribution. Thus, under the null hypothesis, such a test uses ranks
of independent identically distributed sample observations. However, in the scale problem we consider
a new type of test procedures that involve ranking of random variables which, under the appropriate
null hypothesis, are exchangeable. We call these statistics rank-like statistics. It was named by Moses
(1963) in dealing with the two sample scale problem.

In this section we consider a general approach to the rank-like procedures. Let Xy, -+, Xx be indenpen-
dent random variables with continuous cdf Fi(x) given in (1). And let X* be a symmetric function
of the random variables. Here we define new set of random variable Z;= | X.—X* |, i=1,--, N.
And RY s are the rank of Z’s among Z;,--*Zy. Then we define the two types of statistics as follows,

. 1 A
v= ¥ o3k) - WN)ISYE), Mi= mar wi(k) - (AN)ZSL(E) (8)
k=1 1<kN-1

where v%(k) and w(k) are weight functions, and S%(k) is the two sample rank-like statistic based
on the ranks R7%, -, R%.

In particular, if we take weight w(k) =1 for all k, and score function av(R?) being Mann-Whitney-
Wilcoxon type, then statistic M% becomes Talwer and Gentle’s(1981) statistic.

3. Asymptotic Distributions and Pitman Efficiency

We begin w1th derviation of large sample distributions for the test statistic under the null hypothesis
and a broad range of alternatives applying the theory of weak convergence. The distributions are related
to the those of certain functionals on Brownian bridge, but some of the functions appeared in the
statistic are not continuous in the uniform topology on [0, 1]. Conditions on functionals are given
under which one can assert that the large sample distribution of the test statistic is that of a functional
on Brownian bridge. Using these results, we also compute the Pitman efficiencies among the classes
of test statistics.

3-1. Sum-Type Statistics

We first consider independent random variables X, ', X» with distribution
Fx)=F((x—w./ ¢, 6;=log o;, I<i<N.
Let us take the null hypothesis as before,
H, . 0,/=-=0y=0 (9

. 18 2 20 DY T T T N g N P
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We define sum-type statistics Ly as in (6) and let

FF(w))
v, H=—1-F'(u) - ﬁq(ui))— ,

h(s, ) =n- {s(l—t)l(sg) +t(1—-s)I(,Ss> b, 0<s, 1<

wit, H=his, t) A" f; owy(u, fdu, €8))

and [Ns]=max{k : k< Ns for s€[0, 1] and k is an integer}.

Theorem 3.1 LetJ( - ) be a nonnegative measureable function defined on [0,1] such that [,(¢(1—£))""

J(®dr<oo. If weight {vn(k)} are given by the integral of function J(£) on interval L=[(2k—1)/(2N),
Cr+1)/(2N)], k=1,--, N—1, then under Hwna, the sum-fype statistics Ly converges in distribution
to [,J®)BW+ult, H)dt, where B() is th Brownian bridge.

(proof) We first define the intervals I, as

2k—1 2k+1 1 2N—1

2N’ oN ], k=1,, N—1, Io:[O, WJ and IN:[—Z'F,

L= 1]

Then we have
Sv(INtD) =Sy (&) for t€L, k=1,-, N—1

and the statistic Ly satisfies
L= E ov®) - AWM= T [, JO) - WN) SNt
— [T () - (N)F SW(INEDdt @@
2N

Now we easily show by the weak convergence of linear rank statistic and Lecam’s third lemma
that, under Hws, (A°N)3 Sy([Nt1) converges in distribution to B(t)+w(t, f).

Since J(t) has a finite integral value on interval (12N, 1—1/2N] for every N, it follow by the
above result that under Hexs, [ 1;%} () - (A2N)*% Sx([Nt1)dt converge in distribtuion to | 11‘% JOB®+
Hi (¢, N)dt. ™ ™

On the other hand, since (w(t, N)*<t(I—1) for 0<s, +<I and [} J(t) - (t(1—H))"* dt<wo, we
have

tim E1f, JOGO+ul Pt < tim 2 [, (0Ga-0)° d=0.

Touly

-5
Hence we obtain that [ ﬁm](t)CB(t) +w(t, )dt coverges in probability to f; JBOBW®W +wt, Nat.
Thus if we combine above three results, we obtain that under Hing, Ly coverges in distribution

to [, J(OBW+wt, Nat.

From this theorem, the Pitman efficiencies of the sum-type tests follow easily. If we define critical
value C. by

P{[} J@®© - B®) dt <C. for all t£(0, D}=1—a
then the asymptotic power of Ly satisfies that
lim P{Lx>C. | Hwal =P{[, J&) B®) +w(t, H)d>C.} (13)
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Theorem 3.2 Suppose that the weights {vx(k)} satisfy the conditions of theorem (3.1?. '
(1) The Pitman efficiency of an La-test with score function ¢: and weight generation fucntion Ji(®) with
respect to another La-test with score function ¢: and weight generation function J:(t) equals

Ao (fo 0y u, Haw)* _ (Jo OR(s, Dab)?
.Azol (flo (bz(u)\ll(u, f)du)z (jlo ]z(t)h(s, t)dt)2 :

(2) The Pitman efficiency of an Ly-test with respect to another Li-test with the sam score Sfunction, but
a different weight generating function is
(& TORGs, Dat)?
(8 J.Oh(s, D)

3-2. Max-type Statistics

Next, we consider the asymptotic distributions of max-type statistics My defined in (7). For these
statistics we must distinguish between bounded and unbounded weight functions. Because for the test
statistic with bounded weight function it will be easily proved that the max-type statistics converge
in distribtion to the maximum of Gaussian processes. But we can not apply similar convergence theorem
for the test statistics with unbounded weight. Therefore we have to apply another method for this
case. 7

Now we first consider weight functions wx(#) such that 0<wy(t)<c, for 0<t<I, some constant
¢ and we define the function s (¢) : [0, 11— R by un(t) =ws([Nt]) (take wn(0)=wv(N)=0).

Theorem 3.3 Let the function m(t, ) ° [0, 11— R be define as in (11). Suppose that the score
function O(t) is square integrable and the function wy converges to w in the Skorohod topology. Then

under the alternatives {Huxa}» My converges in distribution to the supremum of the process {w(#) (B(£) +w(t,
N L o<t<I}

(proof) We define the stochastic process {Yx(#) : t[0, 1]} by

Y~(t)=(A2N)% - SW(INtD), t<lo, 13,

then we have My=supoca wn(#) Y»(£). Following the proof of theorem 3. 2 we obtain that ¥»(f) converges
in distribution to B{(#)+w(t, ) in the Skorohod topology on D[0, 1].
We define the mapping g and gv from D[0, 1] to D[O, 1] by

2N =w®y®), gvy) =wx(INtDys(t) for every y=DI0, 1].

Then we have that My=sup gv(¥»(#)) and by the assumption, gv(+) coverges to g( - ).
Hence it follows that gv(¥x(#)) converges to g(B(#)+w(t, f)), where {B(#) : 0<¢<1} is Brownian
bridge process on [0, 1].

Now using the result of theorem 3.3 we can derive the Pitman efficiences of max-type tests. If
we define the critical value C. by

P ggllil w(®BW) <C, for all t<[0, 1]}=1—a

then the asymptotic power of My is

lim P{ My>C. | Hwal =P ﬁi‘fil w®) B +wt, NI>C.) 14

N

Thus we obtain the following theorem.
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(1) The Pitman efficiency of an My-test with score function & with respect to another Mi-test with the
same weight function, but a different score function &: equals to

2(f8 oy, Hdu)?
A%u(fd o yu, Hau)?

(2) The Pitman efficiency of an My-test with respect to another My-test with th same score function,
but a different weight function is

SUpo<ica Wi €3]
Supo<i<a w2 (t)

Next, we consider the large sample distribution of statistic My with unbounded weight function.
We are sometimes interested in the weight function

k k
wN(k)=(—A7(1— N))J, k=1,--, N—1. (15)

For this weight we can not use theorem 3.3. Hence we need to consider another approach. Here
we prove that the asymtotic distribution of test statistic with this weight become an extreme value
distribution. To do this we need the following definitions : Let

1
aCx)=CQlog x)?, bk)=2log x+2" log: x—2" log m,
av=(log N), bv=bliog N),

k -1 -1
M, )= max (5 (1= 0% @) Suh), (16)
k/NEG, y)
and
MG, )= max_ tI—D)? (AN)? Sy(INED). (17)

We further consider the extreme value distribution, E(x) =exp(—exp(—x)). Then we need a few
lemmas in order to prove the main theorem.

Lemma 3.1 Let ex>(og N’ /N. Then there is a sequence of Brownian bridge {B(t) @ 0<t<1}
such that

1—¢gx
EN
=0((2log: N/ log N) ) a.s.

YTe | Miem 1—s)— sup  GU—D)F B® | (18)

en<t<l-ey

a(log

(proof) From the consequence of Theorem A. 2.1 of Cho(1987), there is Brownian bridge {B ®:o
<t<]} such that

-1 1
sup | (42N)Z S\([N£1)—B()| =0Uog N/N?) a.s.
0<1<1
Therefore,

o sup | GU—D)F {(AN)F SWIND—B®} |

0<t<1 . 3
=0((2log: N)? +log N- (log N)% ) a.s.
1

=0((2log: N/ log N)? ) a.s.

Lemma 3.2 Let tww="Uog N)°/N. Then we have that ay* max(M~x(0, w), Mx(I—w, 1)) —by
— —w in probability.
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k k1 1
im Pl omaz,, e (A= D7 N7 S

1 . ) )
> (Zlog: N)T + Qlog: N)T - (s+2'log:. N-2'log m)}
=0

for all s& R. Since

s d
max WN(k) ° (AZN) 2 SN(k) = (1 _'CN) 2
1<k<S Uog N3

max (Azk)% Sn(k)

1<k Uog N3

SUH0)F  mar  UB? ),

1<k<S (log NY3
it suffices to show that

.1 1
im P{ max (A%)2Sy(k) >2log.N)?} =0. (19
N—w 1<k (og N3

For the proof of (19), if we choose some constant d>1, co=log N°/dog d and define n,=d. Then
we have

P| L (A%)z Sx(k)>(2log N)?}
5‘_;"113{ _max (4R)? Swlk)>(2log N)F)
< EPL_max W= S>> (2n, log N/ (N=n)]

I\

(20)

Here we put x=(2n; log N)** /(N—n;). And by using the matingale structures in the scheme of
sampling without replacement (Serfling(1974)), we have that for h>0,

P Jnax (AWN—R))"* Sy(k)>x)

1 hSN(n,»H)
< epGidz) Elexp( =, )l
< expl—sdh+ " (1‘921}\‘/2’:;:,()?5) }

Ni+1

where f*=(n;«,—1)/N, s and t are any real number. Put y=I~f)n+.(s—8)*/ (N—n;.)*). This
upper bound is minimal when A=4xA.”y. Hence we have

Pl max (AWN—F))* Sy(k)>x}

<k <yt g
—2(xA)? e A?
< gxp(wy Y=N dt-92a-r*) (21
So we have by (20) and (21) that
U 1 442
P zzzgxw (A%)% Sx(k)>(2log N)?<e, - N—d(r—v?‘:l—/*) (22)

Thus if we take a limit at both sides of the above inequality, we obtain the desired result.

Lemma 3.3 Let ex be a decreasing sequence of number such that ex converges to 0. Then we have
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gl - 8/\')
Ex B

(1 - SN)
EN

). sup (tU—D)T BO—blog )< 5} =E(s) (23)

en<t<I—en

lim Pla(log

N—xo
(proof) See Csorge and Pevesz(1981), page 57.

Theorem 3.5 We assume that the score function & is square integrable and the weight function of
statistic My is given in (15). Then under Ho, for — oo <s<co,

lim Plan- My—bx<s} =E(s) (24)

N—w

(Proof) Our proof is in the similar line as in the result of Jaeschke(1979). For ex>(log N)°/N,
we have
Nt(N—Nt) 3
sup =1+0((log N)2 )
w<<i—ev - [NFJ(NV—[NED)

Thus we have
1
av* Mien» 1—ex)=an * M'x(en, 1—ew) * {1+0((og: N/ (log N))D} a.s.

But ay * M'x(ex, 1—en) + 0((log. N/ (log N))*?) converges to 0 in provability. Thus the theorem
3.5 follows from lemma (3.2) and lemma (3.3).

4. Small Sample Power Comparison of the Tests

4-1. Empirical Critical Values for Test Statistics

In this section, we will estimate the power of test statistics for moderate sample size using Monte
Carlo simulation. To do this, we frist have to estimate the empirical critical values of test statistics,
and next to estimate the empirical power of tests based on the estimated critical values.

The test statistics we have considered are two kinds of statistics, namely sum-type and max-type
based on both rank statistics and rank-like statistics. For each statistic we can take the following score
functions. In the rank statistics there are many possible choices for score function ax( - ). Some well
known score functions pertinent to testing scale parameter are the Carpon normal score, the Savage
exponential score and the Mood score. They are respectively defined by

k k 1
aN(k) :E(VN(k))Z, aN(k) = EI(N“]'{'])I, aN(k) =( m - 7 )2 (25)

where V% is k-th order statistics from standard normal distribution. In case of rank-like statistics
we may take several score functions. Here we only use Wilcoxon score function.

Secondly, we have to take the suitable weight function. In the La-test statistics, we can take two
possible choices for weight function vx(k). They are respectively defined by

2
vi(k) =N' and (k) =(k(N—k))?, k=1,-, N—1.

Then we define test statistics Ly associated with (k) by

L. -1
Li= T vw(®) - AN)Z Su(k), i=1, 2.
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L

wiB)=1 and wi(R)=N-GWN—Fk))

With these weights we define test statistics My as follows

M=  mar wiE) - (AN Sy(k), i=1, 2.

1<k<N-1

Finally, we estimate the critical values of the tests for two different sample sizes N=30 and 50
when the nominal levels are a=0.10, 0.05, and 0.01. But we only present the results of sample
size 30 in this paper. For each statistic, we replicated 1000 samples of size N. Simulation results
are given in Table 1.

Table 1. Empirical Critical Values
sample size=30, No of repetitions= 1000

test weight score Norminal level
statistic function function 0.10 0.05 0.0i
sum-type i normal 0.358 0.495 0.810
Mood 0.362 0.471 0.865
Savage 0.356 0.472 0.864
rank-like 0.365 0.476 0.853
il normal 0.836 0.129 1.899
Mood 0.857 1.134 2.046
Savage 0.835 1.138 2.039
rank-like 0.875 1.116 1.976
max-type W' normal 0.955 1.125 1.551
Mood 0.991 1.135 1.723
Savage 0.976 1.116 1.659
rank-like 0.974 1.102 1.650
Wi normal 1.524 1.988 3.793
Mood 1.571 1.940 4.240
Savage 2.251 2.604 4.907
rank-like 1.838 2.822 4,160

4-2. Monte Carlo Simulation

First, we consider four different types of underlying distribution, namely normal, logistic, double-
exponential and exponential. In each distribution we have empirically estimated the power for sample
size 30 and 50 when the change point occurs between Xi and X.+;, #=[Nt] with £=0.1, 0.3 and
0.5. And the scale shift ¢® is set to be 1.5, 2.0 and 2.5 and also the significance level is 0.05.

For each alternative, 500 samples of size N were generated and this guarantees that our power
estimates are in error by no more than 1.96(0.25,7500) =0.043 with 95% confidence. All the simula-
tions were carried out on IBM 4331 computer at Chonnam National University. Here we only present
the results of the alternative ¢°=1.5 and the chang point at #=3 and 15 with sample size 30. These
results are shown in the Table 2.

In the sum-type statistics, we see that the normal-score test statistics are most powerful among
the croncidered tacte Morenver the nower of Mond ccore fecet 1 9 little hetter fthan the nower of
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Table 2. Monte Carlo Power Comparisons

Sample size 30, ¢'=1.5

distri change score test statistic
bution point function Lo M. L2 MY
normal 3 normal 0.113 0.097 0.135 0.145
Mood 0.088 0.088 0.093 0.061
Savage 0.093 0.060 0.091 0.069
rank-like 0.102 0.094 0.111 0.117
15 normal 0.285 0.287 0.295 0.781
Mood 0.295 0.295 0.273 0.278
Savage 0.119 0.079 0.102 0.083
rank-like 0.280 0.292 0.271 0.275
logistic 3 normal 0.117 0.099 0.147 0.131
Mood 0.113 0.093 0.113 0.161
Savage 0.075 0.052 0.079 0.127
rank-like 0.121 0.095 0.125 0.121
15 normal 0.223 0.237 0.233 0.116
Mood 0.267 0.259 0.251 0.253
Savage 0.081 0.075 0.079 0.079
rank-like 0.251 0.292 0.245 0.239
double- 3 normal 0.103 0.089 0.123 0.117
expon. Mood 0.113 0.083 0.111 | 0.143
Savage 0.069 0.052 0.075 0.107
rank-like 0.111 0.111 0.116 0.116
15 normal 0.176 0.190 0.179 0.095
Mood 0.204 0.219 0.187 0.201
Savage 0.075 0.067 0.071 0.073
rank-like 0.223 0.219 ' 0.219 | 0.201
exponen. | 3 normal 0.063 0.053 0.077 0.060
Mood 0.083 0.065 0.081 0.091
Savage 0.107 0.131 0.117 0.151
rank-like 0.083 0.075 0.093 0.099
15 normal 0.065 0.073 0.085 0.046
Mood 0.091 0.093 0.083 0.088
Savage 0.215 0.190 0.193 0.107
rank-like 0.165 0.173 0.161 0.147

v'v and w'y are the most powerful when the change point occurs in the middle part of the sequence,
on the other hand the tests with weight v’ and w’v have high power when the change point is near
the ends of two sides in th sequence.

Secondly, we consider the power of Ly and My statistics with the random sample coming from a
logistic or double-exponential distribution. When the change point occurs in the middle, best power
is obtained by test with the Mood score and rank-like statistic with Wilcoxon score for the both weight
functions. And the test of normal score has relatively good power. The Savage score test is the least
powerful. But when the change point occurs near the beginning point, the high power is obtained
by the test with normal score and weights % and wf. All of other test statistics have similar powers
except the Savage score. This result shows that the power of tests depends more on weight functions
than the score functions in this case.

Finallv. we concider the nowere nf ctatictince <ol am 3ot bt oo 5 e e
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