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Abstract

The (L.,¢) feature description on the binary boundary aircraft image is introduced
of classifying 3-D object (aircraft) identification. Three types for associative matrix
memories are employed and tested for their classification performance. The fast
association involved in these memories can be implemented using a parallel optical
matrix-vector operation. Two associative memories are based on pseudoinverse sol-
utions and the third one is interoduced as a paralell version of a nearest-neighbor
classifier. Detailed simulation results for each associative processor are provided.

I. Introduction ative data, we consider the recognition and

identification of a moving (i.e. airborne) air-

The general problem we consider is the craft. We also assume that the object is iso-

recongition, classification, and orientation lated from the background and this allows
estimation of an object with no stable position. us to use feature extraction techniques.

To bound the problem and to allow quantit- The aircraft image identification problem
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has been pursued using various methods,
Dudani et. al” extracted moment invariants
from aircraft image and analyzed these image
features using a Bayesian classifier and a
K -nearest neighbor classifier with K=10,
However, these moment invariants are very
noise-sensitive and also have large dynamic
range requirements. Fourier descriptors have
been studied for shape recognition by several
authors, Wallase and Wintz® have applied
normalized Fourier descriptors to aricraft
identification. They used 6 aircraft types and
143 3-D views of each aircraft type as an
image data base. The computational load at
the matching stage is intensive, compared to
our vector-inner product (VIP) associative
processor, in which the key feature vector is
simply multiplied by a memory matrix to
achieve the classification estimation. The
syntactic pattern recognition method® has been
applied to aircraft boundary data. The main
drawback of the syntactic method for 3-D
object recognition arises when random viewing
angles must be handled. In this case, many
hundreds of match possibilities must be che-
cked, and the labor needed to derive approp-
riate grammars becomes prohibitive. Brooks'
¥ introduced ACRONYM, which is a domai-
n-independent image understanding system.
Casasent and Chien® introduced rule-based
interpreter for aircraft image. Both approaches
have merits for high flexibility but this app-
roaches are quite time-consuming to develop
and limited in its capabilities for 3-D problems
we now consider,

Our associative memory approach is attra-
ctive in two respects, First, the parallel matrix
vector processor can be employed to enhance
the sppeed of matching and classification due

to its massive parallelism. Second, the learning

(200)

AIFAletEa) A 7 A A 3 F 19904 6

procedure is quite simple and the resultant

classifier can be easily introduced and tested.

[l. Associative Processors

II - 1. Pseudoinverse Associative Memories

We denote the dimension of the input key
vectors by N, the number of keyrecollection
vector pairs by M and the dimension of the
output recollection vector by K. The key
vectors are denoted by X, the recollection vec
tors by y+ and the memory matrix by M.

The association between input and output
vectors is performed by a memory matrix
described by
ye=Mx:(k=1,"--M) (D
M is a KxXN matrix,. We can introduce two
rectangular matrices X and Y with each x:
and y:+ as their columns, The above equation
is then rewritten as
Y=MX (2)
where X=(X;X, ", X»] and Y=[y,y, -, yu].
The memory matrix is solved by the Moore-
-Penrose method and is given by M=YX",
©)

Here, X' is the pseudoinverse of X. The
recollection of the output vector y’ associated
with an input key vector X’ is the matrix-
vector product y'=Mx’. If the key vectors
are linealy independent, the recollection vector
y’ is identical to the original vector asociated
with the corresponding key vector Xx. When
Y=X, the system is termed a heteroassociative
memory (HAM). Generally, M is also known

as an optimal linear associcative memory
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matrix.

[I-2. Data Matrix Associative Processor

We employ and consider M,=X. We refer
to this as data metrix(it is known as direct
storage memory). This memory is useful, since
it gives the key vector with the closest Ham-
ming distance for binary key vectors (if the
maximum output elements of y is selected)”
> and this analysis has been extended to analog
key vectors® under the condition |Ix«l|=1.
The data matrix is thus a nearest-neighbor

classifier,

I -3. Output Coding and Optical Achite-

cture
As detailed elsewhere®, the chojce of the

y. affects the performance, memory size, and
the storage capacity(M) of an HAM., We con-
sider M vector pairs (differenct object classes
and orientations) with a differenct unit output
vector y: denoting each intput, ie., Y=I in
Eq.(2) or M"=X*. We refer to this as the
identity reall vector pseudoinverse matrix M.
This M:is quite large NXM (i.eK=M) with
the position of the single “1” in the output

denoting the class as well as the orientation
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Fig. 1 Optical Matrix Vector Multiplier
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of the input,
The second associative processor matrix we

consider uses only C elements (C=6) and the
unit recollection vector output now denotes
only the class (not the orientation) of the
input data, This unit vector matrix M. is of
singnificantly reduced size (NXC) vs (NXM),
The third associative processor we consider
is the data matrix MD with the size of NXM
we described above. Recollection procedure
for. these three processors can be paralelly
achieved by an optical vector-matrix multiplier

schematically shown in Fig. 1

. Database and Key Vectors

[I-1. Database Generation

As our database we will use an available
set of six aircraft(DC10, F104, MiG21, B74
7, Phantom and Mirage) stored in a model-
-based description of the vertices of a polygon
of each object®, We employ binary 128X12
8 images,

Fig.2 shows top-down views of the six
aircraft. We now consider 3-D orientation and
first define 3-D orientation angle, §:, § and
g- in the coordinate system shown in Fig.3,
The aircraft is initially located at the center
of the coordinate system shown with its nose
in the direction of the -y axis, its right wing
in the direction of the -+x axis, and the viewer
along (-z) axis (i.e., top-down view). The
distorted versions of the aircraft are specified
by sequentially changing the rotation angles
¢:(pitch), g:(roll) and g.(yaw) angles,

For building training images used to train
the associative memories, we assume that the

training images are required at 10° increments
Ag. and Ag., g- variation produce the rotated

versions in the direction of the field of view.
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Ig. 2 Image Database (128X 1238)
(a) DClo (b) B747 (¢) Mirage (d) MiG2l
(e) Phantom (f) F104

Views W <o X

6, (pitch)

Gy (roll)

Y

Fig. 3 Coordinate System
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They are invariant when we extract invariant
features from the objects and thus g- 1s fixed
arbitrarily. To provide a meaningful database
to test an associative processor, we consider
the reduced problem consisting of 6 aircraft
types, -60°=4.<60°, and 0°=g.{60° with Ag.=
Ag=10". This results in 432 images as the
associative processors training set. Each airc-
raft has 72 different views.

Once the associative memory matrix has
been formed form these training set images,
we test its performance on the test set data
(not present in the training set). The test
set images used are at g and g values mid-
way between the training set images (i.e,
varies from -55° to 55%in 10° increments and
g. varies from 5° to 55” in 10° increme;xts)_
The total number of test images are again

432 for six aircraft,

-2. Key Vector Representation

A feature vector description is adopted for
describing one aircraft image. To form an
N-dimensional feature space, we first determine
the centroid fo the object We then meausre
the perimeter of the object and divide it into
N equal length intervals, We then draw chords
from the centroid to the end points of each
arc and thus produce N chords or an L (
chord length) objcect description. The starting
point is the vertex located furthest form the
centroid and thus these features are rotatio-
n-invariant. The second feature space consid-
ered lists the angle #. for each of the L
chords. Finally, the high-dimensional feature
space is a combined (L, W) listing. Fig. 4
shows the L. and W¥. feature space elements
for one arc. Fig.5 shows the preprocessed
vertex image of a DC10 with ¢.=50", =2
07, and g =60°". If we fix N=144, Fig. 6 shows
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the combined (L,¥) feature space for Fig5
(The first 72 elements represent L and the
other 72 element ¥). To achieve scale invar-
iance, the maximum values of L and ¥ are

normalized to be one,

S (Starting Point)

O(Centroid)

Fig. 4 Schematic showing high-dimensional feature
spaces
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Fig. 6. The combined(L,¥) feature space for the object

in Fig. 5 with N=144 total samples
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[V. Simulation Results

We now address various major issues in
associative process design, These include :
N/ M ratio effects and analysis of our results
that demonstrate and quantify good perform-
ance with MDN. In fact, N=144 is fixed since
it gives best results.

To determine the effects of N/ M on per-
formance (/’.=percent correctly recognized),
we first consider the results obtained with

tests on the training set images (Fig.7) and
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Fig. 7. The Comparative Classification Results of the
Three Assocative Processor Memories on Tra-
ining Images
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then the results obtained with test set mages
(Fig.8). In Fig.7, we note that all three ass-
ociative processors memories give perfect
performance when N/M =0667. The data
memory matrix yields perfect performance for
any N /M values, M, yields perfect perform-
ance when N/ M=1 /6=(3.167 and M perfect
performance when N/M =2/ 3=(0.667. All
three associative processor memories perform
well for M)N (i.e., perfect performance on the
traning set images).

We now consider P. vs N/ M in Fig{ for
test images (different by 5° from the training
set images). We consider the M)N range of
interest (N / M{1). We note that M, performs

gagAEEz] A 7 W A3 5 19909 6%

best(as expected since it is a nearest-neighbor
classifier).

The X' memories attempt to produce diff-
erent vector outputs for the difference in
classes. The suprising dip in the performance
curve about M=N is noted and analyzed
elsewhere'"”,

We also find that the M: memory performs
worst and the M/ memory performs betterthan
the M/ memory.This is expected since the M
memory output per class can be viewed as
the weighted sum of 72 outputs, and hence
will have more output noise than the M,
memory. Recall that if any of the 72 outputs
per class in the M:; memory are the largest,

we assume that the class is correct and ignore

Table 1. Selected performance of the 3 associative angle distortion estimates from M, The P.
processor with different dimensionality N performance of thress memories (and the
associated memory size) for training and test
M My Mo images are summarized in Table 1. For the
Training Pc=100% Pc=100% Pc=100% training set data, the minimum N at which
Set NxM272x432 NxNc2288x6  NxM21Bx432 . . L
perfect performance is available is given. For
Test Set Pc=96.1% Pc-88.4% Pc=97.7% the M/, memory, P. varies little with N (P.=9
(Bost Pc) | N/M=144/432  N/Ma144/432 N/Me288/432 5.6% -97.7% as N varies 36 to 288). The M
(Other Pc) | Pe=91.0% Pc=80.3% Pc-95.6% memory offers the best combination of 7. and
N-36 N=36 N-18 memory size(if performance of 88.4% can be
Pc=85.6% Pc-88.0% Pca97.5% tolerated). Form these data, we find that
N-12 N-72 N-72 associative processors with M)N perform well
Table 2. Confusion matrix for M; data (M=432, N=144)
DC10 F104 MiG21 B747 Phantom Mirage
DCi10 68 0 0 4 0 0
F104 0 72 0 0 0 0
MiG21 1 0 71 0 0 0
B747 0 3 0 68 0 1
Phantom 3 0 0 2 66 1
Mirage 1 1 0 0 0 70
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and yield good excellent P. performance at
modest memory size,

Table 2 shows the confusion matrix for M;
with Pc=415/432x100=96.1% at N=144.
The first data row indicates that{out of a
total of 72 DC10 images) 68 images were
correctly classified and 4 images were incorr-
ectly calssified as B747.

V. Summary and Conclusion

From binary aircraft images, we introduced
the(L,¥) feature space description that is
invariant to shift, in-plane rotation, and scale
changes. Based on this feature space, we
employed and tested three basic associative
memories with detailed performance analyses,
Much interest is forcused on the memory siz
e and performance. The M» memory achieving
a nearest-neighbor classifier shows the best
performance. The M: and M; memories are
found to perform well even with M)N cases,
and this implies that pseudoinverse memories
can be used as high capacity memory classi-
fiers.
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