pH Effects at Doped Si Semiconductor Interfaces

Doping된 Si 반도체 세계에서 pH 효과

  • Published : 1990.12.01

Abstract

The effect of H+ and OH- ion concentrations at doped Si semiconductor/pH buffer solution interfaces were investigated in terms of cyclic current-voltage characteristics. The effects of space charge on oppositely doped Si semiconductors, i.e., p-and n-Si semiconductors, can be effectively applied to study the pH effects and the slow surface states at the interfaces. The adsorptions of H+ and OH- inons on the doped Si semiconductor surfaces are physical adsorption rather than chemical adsorption. Adsorptive processes and charging effects of the slow surface states can be explained as the potential barrier variations and the related current-voltage characteristics at the interfaces. Under forward bias, the charged slow surface states on the p-and n-si semiconductor surface are donor and acceptor slow surface states, respectively. The effects of minority carriers on the slow surface states can be neglected at the doped Si semiconductor interfaces.

Keywords