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Abstract

This paper presents a prototype expert system (ESRCP) for Reactor Coolant Pumps. The
purpose of this system is to diagnose RCP failures and to offer corrective operational guides to
plant operators. The first symptoms for the diagnosis are the alarms which are related to the
RCP domain. Alarm processing is required to find a primary causal alarm when multiple
alarms occur. The system performs the alarm processing by rule-based deduction or priority
factor operation. To diagnose the RCP failure, the system performs rule-based deduction or
Bayesian inference. Various sensor readings are required as symptoms to infer a root cause.
When the symptoms are insufficient or uncertain to diagnose accurately, Bayesian inference is
performed.
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which may achieve performance comparable to

[. Introduction human experts in closely defined domains of ap-

plication. For the operation of nuclear.- power

Expert systems are emerging technology for plants, many expert systems [1, 2] have been
organizing knowledge and applying inference, developed to aid operators in decisionmakings.
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Most of the previously developed expert sys-
tems have been applied to the diagnosis and
treatment of the infrequent accidents such as
LOCA, SGTR and LOFA. Practically, these sys-
tems are not available for component specific fai-
lure. Therefore, component-wise expert systems
for failure management — cause identification and
treatment/recovery —may need to be developed.
For the position of utilities, fast diagnosis and
maintenance by use of these systems may not
only save the loss of the profits, but also prevent
the operator’s inadvertent actions.

A prototype expert system (ESRCP) for diagno-
sis of RCP failure has been developed. RCP has
been chosen as target domain because 1) it is an
important component in maintaining a DNB limit
in the NSSS and 2) its frequent failures, especially
seal part, have been reported [3,4]. The RCPs in
Kori-2 Nuclear Power Plant have been chosen as
target domain.

In ESRCP, the diagnostic symptoms are broadly
classified into two groups :obvious symptoms (e.g.,
the fired alarms associated with the RCP domain)
and non-obvious symptoms such as parameter
values and valve lineup. Due to the functional
relationships between the alarms, a number of
different alarms may be simultaneously or con-
secutively fired. In other words. a primary causal
alarm may trigger several consequential alarms,
i.e.. symptomatic alarms. For this reason, alarm
processing is required in order to find the primary
causal alarm.

For cause identification, the system first tries to

find a definite cause by rule-based deduction.

Cause identification rules are composed of 1) the
heuristic rules which are dependent on a set of
symptoms and 2) the functional rules which de-
scribe the various operating mode logics. This
rule-based deduction is only applicable to the
cases of certain and sufficient symptoms.

When the symptoms are uncertain or insuffi-

cient, the diagnosis must be performed with a

treatment of uncertainty. Several attempts to man-
age such uncertainty have been made [6,7,8.9].
The recent developments of work done by Kaplan
et al. [10] aim to apply Bayes' theorem straight-
forwardly to diagnostic inference. Bayes’ theorem
provides a likelihood measure for each causal
candidate. This approach deals with uncertainty in
a mathematically logical way compared with the

other ad hoc methods.
II. Description of RCP Domain

The diagnostic domain is broadly classified into

two parts : the RCP and its peripheral systems. As
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Fig.2 The Peripheral System Diagram

shown in Fig. 1, the RCP is divided into three
general sections : the hydraulic, the seal, and the

motor. Among the three sections, the seal section
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is an important part because severe seal damage
may trigger seal-LOCA via seal leakage. In 1980,
Arkansas Nuclear Plant Unit. 1 has been suffered
severe seal leakages [4]. The peripheral system
diagram is illustrated in Fig. 2.

The diagnostic symptoms are broadly classified
into two classes, i.e., obvious symptoms and non-
obvious symptoms. The obvious symptoms are 20
odd alarms which are related to the RCP domain.

These symptormns are first symptoms to report
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RCP failures to operators. The non-obvious symp-
toms are instrument readings and plant computer
signals. These symptoms include RCS pressure,
seal injection flow, No. 1 seal leak-off flow, bear-
ing temperature, etc.

As shown in Fig. 3, the failure modes of RCP
are illustrated. The general failure modes include
seal failures, vibrations, loss of seal injection flow,
loss of CCW, electrical bus failure, high tempera-

ture of bearings, etc. [5].
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Ill. Development of ESRCP

III.1. The Structure of ESRCP

ESRCP was implemented on an IBM-PC /386,
by using Prolog language. Prolog provides a
strong capability for pattern matching and a built-
in inference engine(i.e., backward-chaining and
depth-first search).

As shown in Fig. 4, ESRCP consists of three
main parts: an inferencing mechanism, a know-

ledge base and a user interface.
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Fig. 4 The Structure of ESRCP

® The inferencing mechanism part which controls
the search through the knowledge base, match-
ing appropriate rules and facts, executing the
rules, tracking the inference process and in-
teracting with the user through the user inter-
face. This part has four subcomponents : a main

controller, an alarm processor, a Bayesian di-

agnostic module, and a treatment guidance

module.

—The main controller controls the whole di-
agnostic process.

—The alarm processor finds a primary causal
alarm among fired alarms by using functional
rules or by priority factor operation.

—The Bayesian diagnostic module infers prob-

able causes by ranking the probabilities of
their occurrences.

—The treatment guidance module provides
emergency actions and appropriate treat-
ments adequate to given symptoms.

®The knowledge base part consists of rules and
facts for alarm processing, and 20 odd parti-
tioned knowledge units. It is available upon re-
quest to the inferencing mechanism. Each parti-

tioned knowledge unit includes Bayesian di-

agnostic facts, query operation facts, cause in-

ference rules, treatment rules, etc.

®The user interface part which controls window
displays in a terminal and menu-driven inputs to
interact with the user. This part is also essential
for aiding the user to interact with the system

readily.
Il.2. Processing of Alarms

Alarms are generally designed to report the
operator operating faults of equipment. Due to the
functional relationships {(e.g., flow direction, the
interrelationship of parameters, pipe connectivity
and time delay) between alarms, a number of
different alarms may be simultaneously or con-
secutively fired [11, 12]. The operator must
attempt to identify failed equipment and instru-
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Fig.5 Flow Chart of Alarm Processing
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ment and to recognize the primary causal alarm
against the consequential alarms.

The alarm processing is performed by rule
matching method or priority factor (PF) operation.
As shown in Fig. 5, when multiple alarms occur,
the alarm processor first tries to find a primary
causal alarm by matching alarm processing rules.
If the matching rule is not found, then the alarm
processor loads alarm processing facts which are
associated with the fired alarms. Next, the alarm

processor performs the priority factor operation.

_filter
blocking

charging
pump
inlet/outlet
valve closed
or trip

insufficient
CCW flow <
to RCP A N
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When the fired alarms cannot definitely show
the cause-consequence relationships, i.e., uncer-
tainty exists, the rule matching fails. In this case,
the alarm processor in the inferencing mechanism
performs the priority factor operation which is
similar to the certainty factor operation as origin-
ated in MYCIN[6].

In Table 1, the alarm processing facts in the

knowledge base are represented as:

(A, alarm is a causal alarm against A alarm with)
PFA, A).

Fig.6 Cause-consequence Relationships Between the Alarms of ESRCP Domain

The priority factors vary between —1 and +1
The output of the rule matching is a definite prim-
ary causal alarm, while the output of the priority
factor operation is the top-ranked alarm.

Alarm processing rule represents the functional
relationships between the primary and the conse-
quential alarms. This rule is only fired when multi-
ple alarms definitely indicate the causeconsequ-
ence relationships. The causeconsequence rela-
tionships of the alarms in the RCP domain are

illustrated in Fig. 6

where —1 means that the above relationship is
known to be definitely false, +1 means definitely
Table 1. Alarm Processing Template

Consequential Causal Alarm
Alarm
A 1 A 2 e A‘ ven A"
A
Ay
A PF(A;,A))
i
An
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true, and 0 corresponds to the unknown (com-
plete uncertainty) or meaningless case. That is,
positive numbers correspond to an increase in
belief in the causal alarm A, while negative num-

bers correspond to a decrease in belief. In the
case of i=j, the PF(A, A) is always zero because

the cause-consequence relation between the same
alarms is meaningless.

Suppose three alarms, A1, A: and As, are fired.
In this case, the global priority factor of the As
alarm is obtained by the following operation.
(Ake is a causal alarm against A1 with PF(As;, A)). )

As is a causal alarm against A: with PF(As, A.).
In this case, these relations are combined into an
effective single relation with priority factor PF(A.,
AiA:) by using the following combination function
[6].

PF(As, AiA:) (1)

=PF(A:, A\) +PF(As, A2) —PF(As, A\)) XPF(A:, A2)

it PF(As, A)>0 and PF(As, A})>0
=PF(As, A)) +PI;"(A;, A:) + PF(As, A)) X PF(As, Az)
if PF(As, A)<0 and PF(As, A))<0
PF(A,, A\)+PF(As, A2

~ 1—min|!PFA. A) |. PFA:. A) ]
if —1<PF(As, Al)%PF(As, A)<0

By applying this function, the above two relations

are combined into one as:
As is a causal alarm against the other alarmS)
with PF(As, A\A2).

For illustrative example, suppose three fired
alarms, ‘No. 1 seal D/P. low’, ‘No. 2 seal leak-off
flow high’ and ‘Standpipe level high'. In this case,
the alarm processor performs the priority factor
operation because the functional rule matching
fails. In Table 2, the results of this operation
shows that the ‘No. 1 seal D/P. low’ is the top-

ranked alarm.

I11.3. Bayesian Inference

In ESRCP, diagnosis is performed in terms of

levels of confidence when symptoms are uncertain

Table 2. Example of PF Operation

. Causal Alarm
Consequential
Alarm No.1 Seal No.2 Seal Standpipe
D/P. Low | Leak-off High | Level High
No.1 Seal
0.00 -0.60 -0.40
D/P. Low
No.2 Seal
. 0. -0.
Leak-off High 0.60 00 0.80
Standpipe
.4 0.80 0.00
High Level 0.40
Global PF 0.76 0.50 -0.88

or insufficient for the inferencing mechanism to
find a definite cause. This system applies Bayes’
theorem straightforwardly to the diagnostic infer-
ence. Bayesian inference deals with uncertainty in
a mathematically logical way.

S. Kaplan et al. have proposed a method of
inference by full use of Bayes’ theorem [10].
They called this concept of inferential mechanism
as the Bayesian Diagnostic Module (BDM) and
provided a complete theoretical foundation and
description of it. It is summarized in the follow-
ings.

For the diagnosis of system failure, Bayes’
theorem takes the form :

plx)p(E | x)

plx ‘E): "‘S_"p(x.)p(E %)

{2)
where
E : evidence observable
plx) : prior probability of cause x
p(E|x) :likelihood function
p(x|E) : probability that cause x is true cause
given evidence E

The evidence E consists of a set of evidence
variables, V¥, k=1,..., K, each of which may take
on one of several possible values, v%, j=1,..., J.
In Table. 3, the probable cause lists of failure, x;,
are shown across the top side. Down the left side
of the table, it lists the discrete evidence variables,
V. For each variable V7, it lists also the possible

values, v%, that the V¥ may take on. In each box of
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Table 3. Bayesian Template

Evidence | Possible Probable Causes
Variable Values | x; | xo | - X;
Vk
v,’
v! v!-l
v}
vi
1 v,f P (vHix)
vf
Prior p(x)

the table, it enters the number p(v|x), i.e., the
probability that the kth evidence variable, V5,
would take on the value v%, given that the cause xi
is the true cause of failure. This table, in effect, is
presentation of the likelihood function pE|x) of
Bayes' theorem. It may think of the evidence at
any moment as encoded in the set of values U,
i.e., in the specializations taken on by the vari-
ables V¥ at that moment. Therefore, the evidence
E now consists of the set of values v}:

E=1[v}, v ..., UF..., UF] 3)
Assume that individual evidence items vf are inde-
pendent to each other, then the likelihood func-
tion in Eq (2) can be represented as

plE Ix)=p(vi,..., vF|x)

=p(v | x)p(v? |x)-p(uF | x)
= [ plu]x) @
Therefore, it can implement Bayes’ theorem

directly from Table 3 in the following form.

plx) 1 plu#|x)
pbe| )= (5)
3, plx) 3}1 plv’|x)

Thus, given the values v of the evidence vari-
ables, it can calculate the probability distribution
over the xi in a simple way using Eq. (5) and the
numbers p(vtlx). Table 3 is effectively the di-

dJ. Korean I)Iuclear Society, Vol. 22, No. 2, June, 1990

agnostic knowledge base.

This inference method is employed to ESRCP.
The Bayesian diagnostic template for the diagnosis
of ‘No. 2 seal leak-off flow high’ alarm is shown in
Table 4.

Table 4. Example of Bayesian Template

Evidence Selected Probable Causes
Variables Values No.1 Seal | No.2 Seal | No.2 Seal | Instrument
Damaged | Damaged | Not Seated Enor

Operation | v§) >24hr [ 0.600 0.600 0.300 0.400
Time

Standpipe | v{) high 0.500 0.500 0.500 0.200
level

No.l Seal | v§) 2450 0.200 0.400 0.300 0.500
D/P. (@in psi)

Prior Prob. 0.270 0.270 0.250 0.200

Final Prob. 0.239 0.477 0.166 0.118

In this case, the evidence variable V' stands for
‘RCP operation time’ which takes on the values :
n'=‘time<24hrs.’ and v:'=‘time>24hrs.’. V* is
the variable ‘standpipe level’ which takes on the
values : vZ='high’, v2=‘normal’ and uf= ‘low’.
V2 is the variable ‘No. 1 seal D/P.” which takes on
the values: v’=‘D/P.<210 psi’, v*=210<D/
P.< 450’ and v*=‘D/P.Z450’. In the case of the
evidence E= [v2!, v:%, v®], the Bayesian diagnostic
module infers the probable causes by using the
Eq. (5) and the numbers in the template. In this
case, the most probable cause is determined as
“No. 2 Seal Damaged”.

Ill.4. Diagnostic Control Strategies

As shown in Fig. 7, a flow chart of the diagnos-
tic control process is illustrated. First, fired alarms
are inputted. Next, the alarm processing is intro-
duced. From the result of the alarm processing,
the main controller loads the partitioned know-
ledge unit of the primary causal alarm into work-
ing memory.

The diagnosis about the primary causal alarm
begins with query operation. The system interro-
gates various symptoms (e.g., parameter values,
states of valves). During the query operation, if an
inputted parameter is dangerous to the RCP, the
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Fig.7 Flow Chart of Diagnostic Control Process

system messages the operator to take an
emergency action.

When the query operation is finished, the in-
ferencing mechanism first tries to find a cause
using the production rules. If one of these rules is
matched, the system displays a definite cause. If
matching rule is not found, whereas, then Baye-
sian inference is introduced to the diagnosis. The
result of this inference shows probable causes by
ranking their probabilities. Next, the system dis-

plays follow-up treatments using treatment rules.

IIL.5. Knowledge Base of ESRCP

(a) Functional Rules

By using these rules the operating mode and
component states can be definitely identified. The
logic circuit of RCP underfrequency signals are
illustrated in Fig. 8. In this figure, the functional
rules at each gates are described in Table 5.

69KV M-1 69KV M-2
Bus Bus
Reactor Power > 10 %
of full power
P-7
permissive| Rude D
P-7 permissive
signal
Rule F
RCP 1&2
Breaker open Rule E
Reactor
RCP 142 Trip
Trip

UF: Undafrequency Rela!

U :OR
U : AND

Fig.8 The Logic Diagram of RCP UF Trip

Table 5. Functional Logic Rules

Rule No, Rule Description
A [IF] One or two of M-1 bus UF relay is operated
[THEN] M-1 bus UF signal is generated.
B {1F] One or two of M-2 bus UF relay is operated

{THEN] M-2 bus UF signal is generated.

[IF} M-1 bus UF signal is generated and
C M-2 bus UF signal is generated
[THEN] UF rip signal is generated.

[IF} Reactor power level is above 10 % of full power

[THEN] P-7 permissive signal is generated.

[1F] UF trip signal is generated

[THEN] RCP 1 & 2 are tripped.

[IF] UF trip signal is generated and

F P-7 permissive signal is gencrated
[THEN] Reactor trip occurs.

(b) Alarm Processing Rules
When the fired alarms can indicate deterministic
relationship between the causal and consequential
alarms, this rule can be fired. For example, the
rule for
[IF] Only two alarms, ‘No. 2 seal leak-off
flow high’ and
‘Standpipe level high’, occur
[THEN] The causal alarm is definitely ‘No. 2
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seal leak-off flow high’.

(c}) Emergency Action Rules

During the query operation, if a parameter
value is dangerous to RCP, the system can mes-
sage to the operator with allowable emergency
actions by using these rules.
(d) Bayesian Diagnostic Facts

Bayesian diagnosis is performed using the prior
probabilities and the likelihood functions of causal
candidates. For a given evidence, the discretized

likelihood functions are represented as :

sub-likelihood(
evidence(time—less—than—24hrs |yes), [
nol-seal-damage : 0.4,
no2-seal-damage : 0.5,
not—fully—seat : 0.7,
instrument—error : 0.3]).

This fact is fired when the value of the
‘time_less_than_24hrs’ query item is ‘ves’. The
crucial contributors of the Bayesian inference are
the discretized likelihood functions.
(e) Cause Inference Rules

Some given set of symptoms can definitely
draw a hypothesis. Therefore, these rules are only
fired when there is no uncertainty in solving a
hypothesis. For example, in the case of the di-
agnosis of ‘Seal injection flow low’ alarm, a sam-

ple rule is as follows.

(IF] Seal injection flow is truly below normal rate
and
Charging pump is operated well and
Seal injection valve lineup is correct and
Seal injection filter D/P. is more than 19.2
psig

[THEN] The definite cause is ‘filter blockage’

This rule consists of the [IF] clause that represents
a set of discretized evidences and the [THEN]
clause that represents a definite cause.
() Follow-up Treatment Rules

This rule can infer appropriate follow-up treat-
ment according to RCP trend. This rule is fired

with a set of operational guidances to restore
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abnormal RCP state to normal.

IV. Results and Discussions

IV.1. Single Alarm Diagnosis

When ‘No. 1 seal leak-off low flow’ alarm
occurs, the diagnostic procedure is as follows.

The operator inputs this alarm through the
checker alarm menu as shown in Fig. 9 Because a
single alarm is inputted, the system skips the alarm
processing step and loads this alarm’s partitioned
knowledge unit. Next, the system requires to input
several symptoms. After the query operation, the
system tries to find a definite cause by the rule-
based deduction. In this case, since the symptoms
are insufficient and uncertain to determine a defi-
nite cause, a rule is not fired. Therefore, the
system performs the Bayesian inference. The re-

sult is shown in Fig. 10.

IV.2. Multiple Alarm Diagnosis

When ‘No. 1 seal D/P. low’, ‘Thermal barrier
temperature high’ and ‘Seal injection flow low’
alarms occur, the diagnostic procedure is as fol-
lows.

The alarm processor tries to find the primary
causal alarm by the rule-based deduction. In this
case, the matching functional rule is not found. In
turn, the alarm processor ranks three alarms by
the priority factor operation. From the result of
this, the ‘Seal injection flow low’ alarm is chosen
as the primary causal alarm. Next, the system pro-
vides the ranked alarm menu as shown in Fig. 11.

The first option is the highest ranked alarm. By

“selection of this option, the diagnosis of the prim-

ary causal alarm can be performed. During query
operation, if symptoms are dangerous to the RCP,
the system messages the operator to take an
emergency action as shown in Fig. 12. After the

query operation, the system tries to find a definite
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seal inf. control walue(HCU-218).

S)  Any tiee seal water injection ix lost or secured, Insure that at least
25 qpm of Jess than 185 °F cosponent cooling water i supplizd to
therm) barrier.

Fig.11 Ranked Alarm Menu

Fig.14 Follow-up Treatment Messages
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cause using the cause inference rules. In this case,
one of these rules is fired. Therfore, the system
displays a definite cause as shown in Fig. 13 and
skips the Bayesian inference step. Finally, the sys-
tern provides appropriate follow-up treatments to

the operator as shown in Fig. 14.

V. Conclusions

A component-wise expert system (ESRCP) for
RCP failure diagnosis and operational guidances
has been developed for Kori-2 Nuciear Power
Plant. This system can aid operators to diagnose
RCP malfunction quickly.

Partitioning of the knowledge base into the
alarm basis knowledge units enables the system to
diagnose RCP malfunction quickly. Moreover, up-
dating of the knowledge base is easy and simple.
This system diagnoses malfunction in parallel with
the generation of operational guidance.

The knowledge elicitation process plays an im-
portant role in the accuracy and integrity of the
knowledge base. The priority factors and the
likelihood functions are ranked by means of the
empirical knowledge elicited from the domain ex-
perts. Fine tuning of these values is performed by
several tests of execution results. If the diagnostic
results are not reasonably accepted under a given
set of symptoms, revision of these values enables

the system’s performance to be increased.
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