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Abstract

This paper describes a method for estimating the flux and precursor spatial distributions
using only limited flux measurements. It is based on the Luenberger observer in control
theory, extended to the distributed parameter systems such as the space-time reactor dynamics
equation, The results of the application of the method to simple reactor models showed that
the flux distribution could be estimated by the observer very efficiently using information from

only a few sensors.

kO

1. Introduction

There has been strong need for studies of spa-
tial reactor control due, on the one hand, to the
economic necessity of large core design trend re-
sulting in decreased spatial stability and, on the
other hand, to the growing demand for operation-
al flexibility such as load-follow operation. The

modern control theory could be beneficially used
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for these studies, although practical implementa-
tion of the theoretical results to nuclear reactor
control has been very limited so far [1-3].

A nuclear reactor is a distributed parameter Sys-
tem (DPS) since its state variables such as the
neutron flux and temperature should be described
by partial differential equations. State feedback
control provides many advantages such as stabi-
lization and improved transient response. Several

theoretical results are available in the literature for
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feedback stabilization of certain classes of unstable
distributed parameter system, which could be used
to design a state feedback controller of a nuclear
reactor. However, the synthesis of the stabilizing
feedback controls frequently calls for complete
knowledge of the system state in space and time.
But not all the state variables of concern are
measurable, (e.g., delayed neutron precursors,
jodine, and xenon are not measurable) and, even
if measurable, they are measured only at a finite
number of localized zones due to practical reasons
{e.g., neutron flux is measured at a few positions
in the reactor). Moreover, because of the distri-
buted nature of the problem, the spatial locations
of the sensors and controllers are in general diffe-
rent, as depicted in Figure 1. Thus determining
the states of a DPS from output measurement

data is of fundamental importance.

L
. |- D, :
Sensor U
Outputs < T

D, Q

a(x,t)

.

L 8Tm,in , 8B, etc
 : reactor core
D, : sensing domain (i=1, 2, 3)
1 - internal point sensor
2 - internal regional sensor
3 - external sensor

8Z. : control rod input
8Tmin : inlet temperature input

8B : Boron concentration input
Fig.1. Sensor and Controller Configuration

of a Nuclear Reactor
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As summarized in Section 2, the optimal control is
obtained as a linear feedback form in states. Thus,
in order to implement the state feedback control,
the states that are not measurable should be esti-
mated or reconstructed. In modern control theory,
the state reconstruction using dynamic observer
has been well developed since the pioneering
work of Luenberger [4] and the extension to
infinite dimensional systems such as DPS has
attracted particular attention and has widened its
scope [5,6].

This paper describes the observer theory in the
distributed parameter system and presents its ap-
plications to reactor problems: estimation of the
flux and precursor distributions using flux
measurements by a finite number of sensors. In
Section 2 we present the model system to be
solved and discuss the optimal control theory and
the necessity of the state estimator. In Section 3
we describe the observer theory in DPS and in
Section 4 we present its applications to the reac-
tor problems, followed by concluding remarks in

Section 5.

2. Problem Formulation

2.1 System Description

Consider a nuclear reactor which can be de-
scribed by the following multigroup state-space
model :

A(z,r,t)%z:F[Z,r,t], re},

[ [zrt]=0,re 00, (2.1)
where z{r,t) is the state vector function, A(z,r,t) is a
matrix-valued function of its arguments of
appropriate dimensions, F[-] is a spatial operator
over 3, 0 and 90 are the spatial domain of
interest and its boundary surbace, and I' [+] is a
spatial operator over 9Q, compatible with F[--].

The nonlinear DPS state-space model (2.1) is

quite general. The model is also valid for “multi-
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region” reactors which have some parameters with
step discontinuities on the interfaces of the various
regions. As an example, a reactor with one fast-,
one slow-group flux, and one-group delayed neut-
ron precursor can be represented as

z=[®e, @, C]7,

A=diag[v ', vs ', al

F=[V D —(ZutZa+(1—73)v Zp] Pet

{1—8)yv Ss®s+ AC,

Sh®i+(V - Dsv — Su) P

BUvSi®+ 3 v Ss®s— AC] (2.2)
where ®:, ®., and (' are the fast—, slow-group
neutron flux, precursor concentration, respective-
ly. Here @« &, D, ¥ Py, and Ds Ps are con-
tinuous at all region interfaces, and z vanishes at
the extrapolated boundaries.

The control rod model can be added to (2.2) by
expressing the control rod movement as a move-
ment of the rod tip. A convenient representation
of the control rods is that X .. the thermal absorp-

tion cross-section, is given by
[N
Y= S} + ; u(t) 6 (r—r), (23)

where = (1) is some average value, and wu(t) is the
strength of a thermal absorption source or sink at
the tip n of the k—th control rod. Equation (2.3)
represents the effect of slightly displacing the con-
trol rods. If we consider various feedback effects
such as temperature, xenon and fuel burnup, the
more general description for Z.s can be obtained,
which is left to a further work.

We use linearized models by considering small
deviations of the state variables from their nomi-
nal(operating-point) ones. In this case the control-
ler is usually designed such that the operating-
point performance is optimal in the sense of
making the deviations as small as possible. We
assume that the operating-point is the “steady-
state,” which means that the control frods at the
steady-state position keep the reactor critical. The
steady-state z(r) is determined by setting 2=0, i.e.,

by solving the equation

F[z(r), r] =0 (2.4)

Denoting by ¢ z the deviation of the state vec-
tor from its steady state z(r), we can get the linea-
rized model by neglecting higher-order terms.
Without loss of generality, we can put the equa-
tion into the following form

c% z(r,t)=Alr,Hz{r,t) + B(r,u(r,t), r € Q,t > to,

(2.5)

where the symbol z is used for the deviation of
the state vector, 8z, and ufrt) for the control
inputs. Here A is a linear spatial differential oper-
ator and B is a known matrix, which can be
time-dependent as in burnup problems.

This is the linear DPS nuclear reactor model
which is to be studied here, and holds only for
small control movements about some steady-
steady-state operating point z. Also the boundary
conditions associated with {2.5) have the form

alnz(r,)=0,re€ 3Q, t>t, (2.6)
where a(r) is a spatial operator over 9 compati-
ble with A.

2.2 Optimal Control Theory and Dynamic
Observer

We want to apply the results of optimal control
theory of DPS to the systems described by the
equations (2.5) and (2.6). The control objectives
are expressed by the objective function and con-
straint sets. The objective function is essentially
based on the desired flux and precursor distribu-
tions. These distributions are time-varying, and the
reactor is controlled so as to be close to the
desired distributions in an integral sense. In
mathematical notations, the objective function is
an integral over the control period [to, T] and the

reactor core volume
T
L= dt} dQ(W¢(r,t)[¢(r,t)—¢d(r,t)]2
1) Q

+ Welr,t) [Clr,t) — Culr,B)]?
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+ szil [Wu.k(t) [Uk(t) — Uka)?
+ W) ti(t)] ) 2.7)

where u, and {, are values of the control inputs
and their time rates of change, and W(r,t) are
weighting functions to be freely chosen. The sub-
script d is used to indicate the desired values of
the variables.

What we really want to obtain is the optimal
input which drive the system into the desired state
in such a way that the objective function L is
minimized. This is the well-known linear-quadratic
optimal control problem. The optimal control law
derived in modern optimal control theory is of the
form

u’(r,t) = —K{r,t)z(r,t), 2.8)
where K is a matrix operator, the explicit form of
which can be found as a solution of the Riccati
equation.

Note that the optimal input in (2.8) can be
realized only if we know all the states as functions
of both space and time. All versions of the optimal
control problems have in common the basic
assumption that all the state vector z{r,t} is com-
pletely available. However, not all the information
of the states can be obtained due to various prac-
tical reasons as discussed in Section 1. For
lumped parameter systems, Kalman filters or
Luenberger observers have been developed to
obtain a suitable estimation or reconstruction of
the states. Recently, Woo and Cho [7] applied
the observer theory to the optimal control of
xenon concentration in a nuclear reactor, where
the observer was used to estimate the iodine and
xXenon concentrations in point reactor kinetics.

In the present work, the dynamic observer in
distributed parameter systems is developed in
order to reconstruct the missing space-dependent
state variables. These reconstructed states are to

be used in (2.8) to provide the optimal input.

J. Korean Nuclear Society, Vol. 22, No. 2. June, 1990

3. Observer Thory

3.1 Mathematical Formulations

We consider the system described by the fol-

lowing abstract partial differential equation

z=Az+Bu ;
(S) Z(O)‘—:Zo7 (31)
with output function
v=Cz, (3.2)

where the state variable z is defined on an
appropriate separable Hilbert space Z and the
control input u and the output y are defined simi-
larly on separable Hibert spaces U and Y, respec-
tively.

Then, if we assume that A generates a strongly
continuous semigroup (S()i> on Z, the system
(S) admits a solution

2()=S(tz0+ | S(t—s)Buls)ds ; (3.3)

u(t)=Cz(t).
Note that the assumption on the spatial operator
A is generally satisfied by the parabolic distributed
systems, an example of which is the neutron diffu-
sion equation. Curtain [8] considers that the spa-
tial operator A satisfies the following three fun-
damental assumptions concerning the spectrum of
the operator :
Al) spectrum determined growth assumption

sup Re o (A)=lim S LSEITL _ 5y

toaco t

where ¢ (A) is the spectrum of A.

A2} spectrum decomposition assumption
For every § >0, define
ofA)=0c(A)N1A :Rer =— 61,
0fA)=0c(A) N{A :RedA<—¢1}. (3.5)
The assumption is that 6.{A) is bounded and
is separated from ¢.(4), so that a rectifiable

simple, closed curve can be drawn so as to
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enclose an open set containing ¢.(A) in its
interior and 9.(A) in its exterior.
A3) analytic spectrum assumption
A is normal with compact resolvent and there
are only finitely many eigenvalues in {A : Re
A>— 481 for any & >0 and each eigenva-
lue has a finite dimensional eigenmanifold.
Then, we can decompose the space Z with 2
finite dimensional and 2 infinite dimensional satis-
fying Al) in the following manner :
Z=2"®2 ; 2'=PZ, Zr=(I—P)Z,

9:7};’.— { (A—A) 'dA, (3.6)
where T' is a curve enclosing ¢.A). A" is the
restriction of A to Z“ and is bounded, so is A* to Z*
but unbounded.

In order to design the state observers, El jai and
Pritchard [9] introduced the concept of “strategic”
sensors by defining the following properties :
D1) weak observability

The system (S) is weakly observable on [0, T]
if

CS(t)2e=0, 0<t<T. => z=0. 3.7)
D2} strategic sensors

If we define the sensors as the couples (D,
fhi< <o where D is the support of the sensor, f is
the spatial distribution of the sensor and q is the
total number of sensors, the sensors (D, fhsisq
are said to be “strategic” if the system (S) is weak-
ly observable on [0, T] for any T>>0. In other
words, (D, fli<i<. are strategic if and only if

(i} g>sup 7.,

(i) rank H.=7., n=1,2,--.J (3.8)

i = <f, Wy > D), i=12.q;j=12,,7a

where 7. is the multiplicity of the eigenvalue A .,

¥, are the associated eigenfunctions, and J is
the number of the unstable eigenvalues.
Then, the following dynamics system

2=AZ+Bu+G(y—C3) ;

©) 2(0) =20, arbitrary (3.9)

is an identity state observer (estimator) for
the system (S) if the sensors (D, f)i< <, are

strategic for the unstable system of (S), or
equivalently the operator (A—GC) gener-
ates a strongly continuous semigroup
{Sclt)): = o which is exponentially stable, i.e.,
|| Selt)zo |1 < Mexp(—wot) || zo || .
(3.10)
Thus, the error dynamics
e=(A—GC)., (3.11)
will be asymptotically stable, where e=(A—
GC)., will be asymptotically stable, where e

=z—Z is an estimation error.

3.2 Pole Assignment in Finite Dimension-
al Systems

It is natural to ask what form of the
observer gain G should be if we want the
operator(A—GC) to be exponentially
stable. We first determine the unstable
eigenvalues A:, A3, As with correspond-
ing eigenfunctions (¥, n=1,-,dJ, j=1,-,
r«f, all assumed continuous on the spatial
domain. Thus, relative to the basis {¥., n
=1,,d, j=1, ra for Z¢, we have

A'=diag[ A: Iy, Adr.]. (3.12)
If C"is the restriction of C to Z, C* has the
form

C=[Cy, Co, C, (3.13)
where

Co=Chi Chz - Chin

% Chz - Chirn

% Che -+ Chon/n=1, dJ. (3.14)
Note that the elements of C. are identical to those
of . in (3.8). Rewriting the elements of C* we

have
w=Hps=<fi, ¥y>3D). (3.15)

The rank condition in (3.8) means that the sensors
should be suitablely located so as to satisfy the
properties of the strategic sensors.
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Since we want to design the observer gain G in
the decomposed finite dimensional space such
that (A—GC) is exponentially stable, the pair of
(A, C¥) should be observable in the finite dimen-
sional space in order for the stabilizing observer
gain G* to exist, where G is the restriction of G to
Z°. So the problem is reduced to the finite dimen-
sional pole placement problem, namely, to the
problem of determining the observer gain G so
that (A*—G“C*) has the desired stabilizing eigenva-
lues. Pole assignment algorithms for such finite
dimensional problems are well developed in mod-
ern control theory [10]. The next section presents
the results of the application to three reactor

model problems.

4. Applications
4.1 Simple Examples
Let us consider a hypothetical simple reactor
which is described by the one-group diffusion
equation without feedback. We apply the theory
in Section 3 to the one-and two-dimensional
cases where the multiplicity is 1 and 2, respective-

ly. The diffusion equation for such a reactor is

1
Ta?’tizv-Dvsﬁ +(ves,— )¢
$On=¢HH=1.t€ [0, T], (4.1)

where the parameters have their usual meanings.
Initially small perturbation is introduced to the
flux, but the initial condition is not completely
known since the flux is measured only at a few
points. Thus, the model equation cannot be
solved. This is one reason why we want to design
the state observer. Since the state observer gives
us the information of the states irrespective of
their initial conditions, we can reconstruct the
states from the plant output and arbitrary (usually
zero) initial conditions (see equation (3.9)).

For numerical experiments in this study, we
used the material constants given in Table | from
Ref. 1 and used as the plant output y in (3.9} the
simulation results of the model plant (4.1) with

dJ. Korean Nuclear Society, Vol. 22, No. 2, June, 1990

assumed initial conditions on the flux perturba-
tion. The control input is not included here to see
how the state observer works in control-free unst-
able systems.

Table 1. Material Constants Used in Section 4.1

Constants Value
I= Elau 1 0.1 sec
[*= g,, 160 cm®
km:%& 1.0256

4.1.1 One-dimensional case : Slab reactor with H
=500 cm

Following the standard procedure we first de-
termine the eigensets for the system

A¢g=219¢, 4.2)
where
L9 le—1)
A= et T @.3)
¢ (0)=¢ (H)=0.

It is well known that in this case the multiplicity is
1, so only one sensor is enough to design an
observer. The eigensets are

(k..—1) L2( nm

A= T H

Yax)=f Ti*sin(n?”)-

It is clear that the operator A satisfies the assump-
tions Al), A2) and A3} and the unstable eigenva-

lues are A: and A.. If we locate a sensor at the

)2, n=12 (4.4)

point xi1, then A* and C* have the form

A1 0

A=(5 ,

| o= 1wit) ). @.5)
The rank condition in (3.8) gives us the permissi-
ble sensor locations as
rank Hi=¥(x:) +0, (4.6)
rank He=Ws(x1)=0.
Hence, the sensor should not be located at the

reactor boundaries or at the midpoint.
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It is well known in finite—dimensional control
theory [10] that if the pair of (A%, C) is complete-
ly observable, then it is always possible to find a
G* which will yield any set of desired eigenvalues
for (Au—G*C"). In this case if we assign the eigen-
values 141, A to 17, 72 all of which hve
negative real parts, we obtain the values of the
gain |gi, gzl that are the elements of G* using the
standard pole assignment technique. Recalling
that G* is the restriction of G to 2, it is easy to
find the infinite-dimensional observer gain G,
which is in reality the sum of the eigenfunctions
weighted by the elements of G

Then, the infinite—dimensional observer equa-

tion is of the form

94 _L*a4 (k-1
ot I oxt 1
+GH)( ¢ (x)— # (x)), (4.7)
$(0,)= ¢ (H,H=0,
where
Glx)=g:1(x)+ g Valx). (4.8)

For numerical results, we introduced a per-

turbation of magnitude 1X10%/cm? sec in the

3H
flux at x= %{—, The sensor is located at xi= 4
For {71, 74 =1-0.1, —0.2{. Figures 2a and 2b

display as functions of time the two flux distribu-
tions : real and estimated by the observer. Figure

2c shows the estimation error at two points. It is

4. >
- Perturbation at z= 4 ——: Real Flux
“2 Sensor at z = ’-‘u -~---: Observed Flux
= /]
X 4 28N
‘S T {  t=20s¢c
-
2
=
i L}
(=] — ¢ = 10sec
x
E |/ T T
z B T Lk

0. = i H 3l

0 T T K H

Poasition (z)
Fig.2a Flux Distributions as Functions of
Time for the Slab Reactor

shown that the flux distribution estimated by the
observer approaches the real flux very quickly.

- 2 Perturbation at z = 4  —: Real Flux
,:'3 Sensor at z = % ---=: Observed Flux
'E 1.5 |
E
X
o 1.}
2 t = 40sec
=3
<
8
R 05 |
a : t = 30sec
% v
=
[ o . )
H H
0 Y El iy H
Position {3)

Fig.2b Flux Distribuions as Functions of Time
for the Slab Reactor

1.

Perturbation at z = %
Sensor at z = i‘Ll

Error (x10'*/cm3sec)
©
a%
=

-5
-1 _ . .
0 20 40 60 80 100
Time {sec)

Fig.2c Estimation Error Dynamics($ — 3)

H 3H
at =4 and e for the Slab Reactor

4.1.2 Two-dimensional case : Square reactor with
H.=H,=H=600cm

Since in this case the second unstable eigenva-
lue is of multiplicity 2, the minimum number of
sensors required is 2. Let us order the unstable
eigenvalues as A1, Az, Asl = Au, Aw, Aal and

the corresponding eigenfunctions as
2 X Ty
Wi(x,y)= ﬁsin(T)sin(T),

Wi(x,y) = %sin(%)sin(%), (4.9)
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2
sm( Lx )sin(——;_rl—y)
A’ is a 3X3 matrix and C' is a 2X3 matrix. The

impermissible sensor locations should be deter-

Walx,y) =

mined carefully, i.e, if we locate two sensors at

points {x1, v1), {xz, v2), the rank condition is

rank Hi= rank(i’g;’ﬁlg )=1,
1{xz2,Y2
Walxi,p1) Wslxi,pi) _
rank Hz=ran k(wz(xz,yz) waz)) 2. (4.10)

The matrix H: has rank of order 2 in the case that
the determinant of H: is not zero, Hence,

Wlxi,y1) Wale,y2) — Waleo,y2) Walxa,p)) 0. (4.11)
Using function-product relations of trigonometry
[11], and after some algebraic manipulations, we
obtain the relations on the impermissible sensor
locations as

xitxe=uyi+vy2. (4.12)
The gain matrix G* is 3X2, vand the observer

equation has the following form

o L*, 9% 9%, (ke—1)
ot ( axt | 9y )+ ¢
+Gilu) $ (x1,91)— $ (xa,yn)
+Gelxp)( $ (xe2) = # (22,
#0.y.0=# (Hyd ¥ # (:00= # (xH 0,
(4.14)
3. 1
N Perturbation at x = (£, 4) ——: Real Flux
- Sensoratz= (3, 4) .., : Observed Flux
£ 2
g PPN N = 200ec
2 l ”t \‘\
£ Lot TN
0 4 \\
i+ 4
X L e
(=]
X
[ 1 ) )
o % ¥ E &
Position (z)

Fig.3a Flux Distributions as Functions of Time for
H
the Square Reactor at Nodal Line y=13
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where
Gilx,p)=gi¥1(x,y) + g2 ¥2(x,y) + g ¥slx,y),
i=1.2. (4.15)
H
The perturbation was introduced at (-, 3 and
the two sensors are at (%, %) an (gy %)_

Figures 3a,3b, and 3c show the results for {71, 7>,

7 =1-01, —0.2, —03i.
1 ,
T Perturbation at z = ("’ ,4)y —: Real Flux
o Sensor at z = (4, 4 e : Observed Flux
§
P 75
=
i
x t = 40scc
F »
]
2
3 25
A .
= t = 30sec
® /
2
f 0 - . )
: H H 3
0 4 3 8 H
Position (z)

Fig.3b Flux Distributions as Functions of Time for
the Square Reactor at Nodal Line yv="73

3.
Perturbation at (4, 2{)
Sensor at (3, &)
n 2. +
5
:3 1.
X
E oo
nl. L i J. i
0 20 40 60 80 100
Time (sec)

Fig.3c Estimation Error Dynamics(¢ -3

H
at Points x‘—(4, 3 ) and (34, ﬂ)

for the Square Reactor at Nodal Line y=?
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4.2 With One-Group Delayed Neutron Pre-

cursor

Now let us apply the present theory to the
system with more than one distributed state vari-
ables. We consider an infinite bare slab reactor
with extrapolated thickness H, and approximate
its dynamics by the one-group diffusion equation
with one-group delayed neutron precursor :

1 x,t x,t
v 5= Selpw 25
=3P +(1—B)v 3,4 (xt)
+ ACK,H— Zdx,t) ¢ (x,8), (4.16)
3 Clx1)

5t = ﬂ v 2/¢ (X,t)— A C(xyt)7

where Z{x,t), the absorption cross section of a
control rod, is used for a distributed control vari-
able but will be omitted as before to see how the
designed observer works in control-free systems.
The spatially varying parameters are assumed, fol-
lowing Iwazumi and Koga [12], to be spatially
independent. Since physically the neutron precur-
sor concentration is not measurable, is the re-
quired that the dynamic observer be designed to
reconstruct the precursor distribution as well as
the flux distribution, if the feedback control system
is desired.

A linearized state equation can be obtained by

considering small deviations from the steady state

Cog ~
;CI)(x,t)—Sxtl)(x,t), (4.17)
where
D,1=(3 ¢ (x,t) &Cix,t),
2
a—ta t]
s.=("o¥ ") (4.18)
as as

a=uD, a:=v[(1—B)v ,— 2],

@w=vA, ae= L3 gs=—A.
It can be shown that the operator S: satisfies the
assumptions Al), A2) and A3) by proving that the
evolution equation (4.17) has the unique solution.

The detailed proof is worked out by Kuroda and
Makino [13]. The eigenvalues A, and vector
eigenfunctions W(x) of the operator S are found
as

A —i +as— 124,.
.1.2—-2(02 Qs GI(H)_

i im /
[(as-+ as—aul Ty — blacas — asas—avast 7)),

H
(4.19)
iz

W)= 17,9 sin X5 =120, j=12 (4.20)

where

%:(Z:; ):(:M/(M_GS) '

7= 2( Ay—as)
" [(Au~as)2+aaa4]H .

The coefficients 7, are normalization factors de-

4.21)

fined in such a manner as to satisfy the biortho-

normal relation
U w09 dde= o4, (4.22)

The adjoint eigenfunctions Wi(x) are given by

— ¥ — ¥ 1T
Tilx)=7; S"ysinﬁx, (4.23)
where
W= Pn )=(' ) (4.24)
Pie as/ (A.»,-as)

Table II. Material Constants Used in Section 4.2

Constants Value
A 0.078 sec™

v 3 0.0505 cm™

a 0.05 cm™!
0.5071 cm
2.2X10°cm/ sec
75%X107

200 em

I wec OmM

The data used in this example are listed in
Table II. We know that the unstable eigenvalue is
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Au and its multiplicity 1, so only one sensor is
enough, which is located at x=x:. The observer
equation we get is written as

%(i)(x,t)ZSxfi)(x,t)-*-G[S $0a, — & P (x, )],

(4.25)
where
'ib(x,t):( 8;@) :
G= (gg‘)) | (a.26)

gl = [( 71— n)/sint- ) sin(1).
It should be noted that the time scale between
neutron flux and precursor equations is very large,
approximately of the order of 107, and this causes
the so-called stiffness, which results in the restric-
tion of very small time step increments in numer-
ical solutions of the dynamics equations. Since the
major concem in this example is, for the moment,
to see how the designed observer works in the
system with more than one state variables, the
explicit method for parabolic equations is used
using extremely small time step increment, e.g.,
~10* sec. The pole chosen is —10% and the
results are shown in Figure 4. Figures 4a and 4b
display the real and observed flux distributions,
and Figures 4c and 4d the distributions of the two

Perturbation at z = % ——: Real Flux

— 3
Sensor at z = = ----: Observed Flux
— 5.
§ -
o /- - SN w— ¢ = 408ec
E / AN
~— 4 A
™ ’ N\
—1° ’ A
- 4 N\
X ’ \
— i’
g 25 | t = 20sec
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Fig.4a Flux Distributions as Function of Time for
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precursor concentrations : calculated from the
model and estimated by the observer. Figures 4e
and 4f show the estimation error of fluxed and
precursor concentrations at two points. It is shown
that the precursor concentration as well as the

flux can be reconstructed by the observer very

quickly.
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5. Concluding Remarks

Spatial control of a nuclear reactor calls for
complete of the system state variables when state
feedback control is considered. We described a
method for reconstructing the measurable and un-
measurable state variables, which is based on the
observer theory for distributed parameter systems.
If the properties of the eigensets of the spatial
operator are known, the modal decomposition of
the state variables enables us to use the pole
assignment algorithms developed in finite dimen-
sional systems to obtain the stabilizing observer
gain.

The results of the application of the method to
simple reactor models showed that the flux and
precursor distributions are estimated by the obser-
ver very efficiently using information from only a
few flux sensors. Although we applied the method
to simple reactor models in the present paper, we
believe that it is possible to extend it to more
realistic reactor models with temperature and

xenon feedbacks. Work is in progress in this area.
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