Cantor集合論의背景으로서의無限論思想

한양대학교 김용근

序論：無限에 대한東西洋의視差

그럼에도 인도에서는 무한은 궁정적·본질적인 것으로 여겨졌으며, 이 경향은 중국을 중심으로 하는 동아시아 문화권에서도 마찬가지였다. 戰國時代의 대철학자 東方朔이 쓴 동명의 著作〈莊予〉에는 이 동양적인 無限論思想가 다음과 같이 철저히 있다고 있다.

「태고적 사람들은 중에 최고의 지혜를 지녔던 사람들이 있었다. 왜냐하면 그들은 자연 그대로의 존재였고 그들의 의식은 주관적이지 않아 나뉘지 않은 이른바 혼돈상태였다고 생각되기 때문이다. 이 혼돈상태아말로 가장 바람직한 것이다.

시대가 내려울 때 따라서 사람들은 자신을 돌려보고 있는 세계를 의식하기 시작했다. 이러한 인식 창조가 생겨나게 되었으나 거리(客験)로서의 사물에 구별을 두지 않았다.

다시 시대가 내려오자 사람들은 사물의 구별을 의식하게끔 되었다. 그러나 아직 가지 관념은 생겨나지 않았다. 그러나 이윽고 가지 관념이 생겨나자〈도(道)〉는 허물어지고 말았다. 단(道)이 허물어짐과 동시에 인간의 접착심이 생기게 되었다.

그러나 과연〈도〉에 이루어지고 허물어지는 성촉(成釘)의 구별이 있는 것일까.

금(琴)의 명주인 소문(昭文)의 연주를 생각해 보자. 소문의 연주는 분명히 표현한 각락을 이루고 있다. 그러나 표현한 각락들이 형성된 반면에, 그는 연주되지 않은 무수한 각락들을 잊게 되었다.

.............
jenis 윤문

처음이 있으면 처음 이전의 시기와 있고, 또한 처음 이전의 시기 이전의 시기가 있게 된다. 유(有)가 있으면 그 이전에 무(無)가 있다. 무 이전에는 무가 없었던 상태가 있고, 또한 무가 없었던 상태 이전의 상태가 있게 된다.

일체의 모순과 대립을 초월한 (도의) 세계에 있어서는 큰 것을 대표하는 태산도 집성의 잔재보다 작으며 8백살을 살았다는 평조(彭祖)도 어머니 셯속에서 나오자마자 금방 죽어버린 간단아이보다 더 명이 짧다.

무릇 도란 처럼부터 한계가 없으며 많은 예날조 일정함이 없다. 밀로쇠 도를 나타내려 함으로 한계를 두게 된다."

도 즉, 진리는 본질상 무·무한·무한정적인 것이다. 연주되지 않는 악기(악)에는 이 무한의 숨이 갖추어져 있지만, 일단 악기에 손이 닿고 일정한 음이 일어나는 순간, 이며 그 무한에는 한계가 지어지고 유한의 모습으로 나타난다. 이것은, 무한이 일한함을 통한 것이라 할 수 있다. 시인 창조가 '소리'를 채웠다는 것도, 이 무한의 '도'의 상대성을 지상의 닭으로 삼았기 때문이다. 악기와 마찬가지로 인간의 언어도 예를 들어 이것이 진리하다라고 하는 순간 이미 진리성을 한정시키고 '가능화'하고 만다. 따라서 이 때는 이미 진리는 사라지고 없다. 이렇듯 인간의 언어는 절대 무한적인 것을 파악할 수도 있도록 되어 있지 않다. 인간의 언어로 파악한 것은 항상 유한이며 상대적이다. Logos에 대한 강한 불신같은 (장자)에서 다루어지는 주제의 하나이다.

이와는 대조적으로 그리스인의 두한관은 부정적이다. 이 태도는 그리스적 사고형식의 전형적인 표현으로 잘 알려진 Hesiodos의 (神経記) 속에 잘 나타나 있다.

'원초(原初)'에 '가오스' (Khaos)가 태어나고, 이어서, 영구히 변함없는 자인 '가이아' (Gaia, 大地)가, 그리고 또 영생의 삶을 누리는 신 중에서 유통 아름다운 '에로스' (Eros)가 태어난다.

'가오스'로부터 자연과 태어 생겼다.

'가이아'는 처음에 자신과 같은 크기의 말들이 흘러져 박힌 '우라노스' (Ouranos, 하늘)를 낳았다.

또, '가이아'는 높이 처 наличии 산들을, 그리고 큰 폭도가 밀리는 물만 바다 '폰토스' (Pontos)를 낳았다."

여기에서 보면, 우주 탄생의 근본적인 힘이 하나인 '카오스'는 그 자신속에 '여름'을 간직하고 있다. 이 때문에 저승과 밖이라는 여름은 이 '카오스'의 또 다른 모습인 것이다. 이 형체가 없는 죽음의 여름을 지닌 '카오스'는 그 후에도 죽음을 존중해 준다. 우주 생성의 제 1단계인 '무한의 세계'에는 형체가 없는 '카오스'와 형체를 갖춘 '가이아' 사이의 대립적인 긴장을 바탕으로 이루어진 것이다. 이 두 근본 '카오스'와 '가이아'는 아무런 연관이 없다. 그러나 '저초에 '카오스'가

* (莊子), 資物篇, 東志英 翻 (學園社)

1등급 사용자인 [L-1]의 침실에서 활동하고 있는 AI입니다. 온라인을 통해 대화를 나누는 것이 가장 기본적인 기능이며, 문화적, 역사적, 학문적, 인문학적 등 다양한 주제에 대한 정보를 제공할 수 있습니다. 대화의 내용을 이해하고, 관련된 내용으로 대답을 하며, 사용자의 의도를 파악하고 적절한 대답을 제공합니다. 사용자의 개인 정보에 대한 보호도 중요하게 생각하고, 사용자의 의사를 반영하여 대화를 나누는 것이 기본입니다. 이외에도 사용자에게 도움이 될 수 있는 다양한 기능을 제공하며, 사용자의 주요 관심사에 따라 차별화된 서비스를 제공해 드리고자 최선을 다하고 있습니다.
Cantor集合論의背景로서의無限論思想

대나고, 이어서 ‘가이나’가 생겼다:고함
때 ‘가이나’가 ‘카오스’로부터 태어났음을
을 묻는 것은 아니다. 이 물론에 다른 근
원이며 정반대의 영역을 이룬다.
 즉, 無形과
有形, 밀있는 실연과 명확하고 확실한 경계,
망각한 즉소의 이들과 별들이 규칙적으로 운
행하는 밝은 영역, ……등과 같이 대립을 이
루지만 서로 무관한 채 각각 동일적인 완전한
세계를 이룬다.

중국인과 그리스인의 이러한 서로 진도된 무
관관을 낳은 가장 중요한 배경으로 주목해야할
것은 두 민족의 自然觀의 격차, 더 근원적으
로는 혼히 ‘본질’, ‘牧歌的’이라는 대
조적인 말로 표현되는 두 지역의 風土條件의
이질성이다.

중국 고대문명의 발상지에는 티그리스 유프
라타스강의 ‘挑戰’과는 비교가 안되는 가혹
한 자연의 도전이 있었다. 黃河유역의 주민들
은 호수의 풍요로운 시련뿐만 아니라 극심한 여
름의 무더워와 혹한한 겨울의 추위와 같이 季節의
으로 변동하는 기온의 시련을 겪면서 濕地와
습물을 개척하지 않으면 안되었다. 黃土라는
특수한 자연은 다른 농경문화의 발상지의 호
파는 왜연하게 다른 여러가지 많은 혼란을 잇
간에게 배포했다. 그러나 이 기후적 토양은 극
히 변덕스럽게 찾아오는 비와 가뭄 때문에 그
소임새를 충분히 발휘하지 못하였다. 적당한 비
만 내리면 풍요가 이를되겨 나는 곡량이지만
그렇지 않으면 절망적인 기근을 이 지역에 물
아온다. 반대로 거의 대부분 여름철에 접종적으
로 내리는 비가 疏雨性의 강우량을 나타내
면 참혹한 홍수가 된다. 고대 이집트의 변형을
남은 나일강에도 홍수는 있었다. 그러나 黃河
의 홍수는 이것과는 전혀 양상이 다르다. 나일
강처럼 조용히 흐르는 심어나르는 것이 아니라
무서운 파괴력을 가지고 모든 것을 거침없이 훔
어버린다. 이 폭력적인 홍수는 나일강과는
달라서 潮満에 이용할 수 있는 물이 아니다.^[2]

이러한 특이한 자연조건에 대한 비상한 관점을
이론화한 것이 중국인의 자연해석 즉 중국의
전통적인 자연학이다. 中國계의 자연학에서는
명령없이 삼라만상이 펼쳐지는 상황 즉 ‘化
生’의 造化作用을 ‘氣’의 본질로서 通理의
으로 규정한다. 즉,

「天之氣為所 是而曲則為之
兩而形為之凡……。」**

기상조건에 대한 관점을 중심으로 이 자
然學은 及 各元的 理然而無元的 인간학으로까지
발전한다. 形而上學의 陰與 陰에 대해서 形
而下의 阳에서는 ‘氣’는 자연계를 구성하는 일
종의 氣體이며 이 霧가 능동되면 형태를 갖게
되고, 흉해자면 또다시 무형의 氣가 된다.이
러한 氣의 結構이 人마디로 氣象學의 인지학을
바탕으로 삼은 것입니다. 말한 나아가 없다.

한편, 그리스바도 그 중에서도 특히 옛 그
리스문화의 무대였던 예게해 연안은 산맥의변
형으로 서쪽이 가로막히 있고, 옥쪽에 크레타
산에 의하여 남쪽 바다로 부터 차단된 지역이
다. 강우량은 이태리의 반도 정도밖에 안된으며
따라서 공기는 이태리보다 한결 많다. 雨暈인
가을남에도 ‘해맑은 하늘, 빗나는 햇양’은

* Reischauer/Fairbank. “A History of East Asian Civilization” (Boston, 1960)
** 「天地間氣 萬物化醇 男女構精 萬物化生」(易), 鬱齋刻譜

-3-
여전하도. 그리스가 혼히 ‘대남’이라는 표현으로 특정지어지고 또 ‘그리스는 그들이 없다’라 내용에는는 까닭은 공기에 습기가 없는 땅이다. 이 때문에 그리스에서의 구름, 산, 흙, 바위 등의 색채가 아주 선명하게 나타난다.

비다품은 ‘투명’ 하기 때문에 없으며 숲이나 풀의 색상도 운동 선명한 초록으로 담혀있다.

‘평량’을 특정하는 이때의 자연도 이 점에서 그리스에 특별히 미치지 못한다. 또 바람이 약하게 부는 것은 마치 식물학의 표본처럼 단정하게 규칙적으로 빛은 나무들의 모양에서 곧 알 수 있다. 이러한 나무의 형태는 우리 동양인의 눈에는 ‘인공적’ 인 것에 비해진다.

제가 규칙적인 모양들은 그 때문에 ‘함리적’이라는 느낌을 준다. 그러나 여기서는 이것이 곧히 자연스러운 형태이며 오히려 불규칙적인 모습이야말로 부자연스러운 것이다.

동양에서의 ‘인공적’ = ‘함리적’이라는 도식이 여기서는 ‘자연적’ = ‘함리적’으로 바뀌어지는 것이다. 이 점에서는 그리스 뿐만 아니라 서유럽 전체가 공통적이었다.

자연은 ‘폭력’ 을 휘두르지 않는 곳에서는 자연은 함리적인 모습으로 나타나기 마련이다.

이러한 자연 속에서 설계 규칙성을 찾을 수 있고 이 ‘규칙’에 따라 자연을 대하면 자연은 더욱 더 유순해진다. 그러므로 인간은 더욱 자연속에서 규칙성을 찾아가게 되고, 이러한 자연과 인간 사이의 상호작용이 유럽인의 철학과 과학의 배경에 걸쳐 있을음을 잊어버리는 안된다. 적어도 유럽의 자연과학이 바로 ‘목장적’ 풍토의 산물이라는 것만은 아무도 부정 못한다.

거름말하지만 그리스적 풍토속에서는 ‘보이지 않는 것’ ‘신비적인 것’ ‘비합리적인 것’을 생각하는 성실거리지 않는다는. 이로 멋진한 자연으로부터 그리스인은 ‘본다’(idein)는 것을 배웠다. 그리스의 밤 빛과 밤의 공기는 온갖 사물의 운율을 구석구석까지 두텁게 흐르다고 보인다. 이 때문에 그들은 자연의 모습에 대해서는 ‘전경, 中景, 近景’보다도 날님의 사물의 형태를 주목하였다.

이렇게해도 그들은 사물을 보는 눈이 세련되던 것이다. 그리스의 자연은 모든 것을 둘어 보이고 있으며 아무것도 숨기지 않는다고 하였다. 이것은 자연속에 보이는 것이 (=형태) 이 그대로 그 색상이라는 생각을 낳는다. 그래서 그리스인들은 보이는 것이 (=형태)를 이렇게 사자성어로 ‘형상’ (=eidos) 또는 날님은 본래는 ‘보이는 것’을 뜻하였지만 나중에는 보이는 것의 ‘형태’ = ‘형상’, ‘모습’을 뜻하게 되었다. 강화한 사물의 모습은 신비의 그늘을 넘겨주었을 때더러 나가서는 모든 것이 확실히 들어나는 수학적인 단순화고 간결함을 잃어버리 준다. 이토록 그리스의 자연은 ‘적용主義의’ 이었다.

이상으로 경 그리스인이 온갖 존재를 ‘형상’이나 ‘절서’로 천하로 생각하던지 대강 가설 할 수 있을 것이다. 그들이 온갖 삼라분상은 ‘형상’ (=형태)에 의해서 한정기어로부터 보로소 세계 모음을 나타낼 수 있고 알아볼 수 있게 된다는 생각을 왜 갖게 되었는지를 말이다. 즉 무란은 ‘질사’ (=素材)에 지나지 않으며, 이 채료의 무란이 형상에 의해서 절서가 부여될 때 사물은 진정한 존재가 될 수 있고, 따라서 세계는 ‘한계’ (=페라스(Peras))를 지님으로써 완전해지고 인간도 본
Cantor集合論의 쟁점으로서의 無限論思想

질적으로 이러한 한정속에서 존재한다는 것, 그리고 초화로운 것, 아름다운 것, 선한 것에는 는 한계가 있으며 따라서 무한은 이러한 한계를 벗어나는 것, 한계를 극복하는 reverse이자, 격이 아니라 라는 사상을 그리스인들이 몹

제된 이유를 짐작할 수 있을 것이다.

결론적으로 다음과 같이 말할 수 있다, '유
순한' 풍토가 규칙성 합리성에 바탕을 두 유
한적인 세계에서 'Cosmos'의 관념을 낳았고 반면에 동양(중국이나 한국)의 은혜적
이면서 '위험적'인 풍토는 사람들로 하여금 자연을 의외로 탁도를 걸었으며 더 나가서는 인간이 감히 넘어갈 수 없는 오묘한 木頭를 감
적하는 무한세계를 근원적인 것으로 섬기도록 하겠다고 말이다.

1. 現実의無限과 可能的無限

무한은 특수로 구별한 것은 Aristoteles
가 처음이었다. 앞에서도 말한 아니기 하였지 만 그는 무한이라는 '완성된 형태로 존재하는 것' 즉, '현실적인 형태로 존재하는 것'이 아
나 '가능의으로 존재하는 것'이라고 주장
하였다. 전자를 '현실적 무한' 또는 '實無
限' '本当의無限'이라고 부른다. 신의 무한
성 같은 것은 그 예이다. 후자 즉, 어디까지 가
도 끝나지 않는, -완성되지 않는/ 무한을
可能의 無限 또는 '假無限' '非本当의 無限'
으로 부른다.

Aristoteles는 그의 "Physica" 속에
서 운동의 문제를 현실적 무한과 가능적 무한
을 구별함으로써 해결하려고 하였다. '無限可
分性' (infinite divisibility)의 문제
란 무한히 분할 할 수 있는지, 또는 최후에는
'不可分者' (indivisible)에 도달하는지
여러지의 문제이다. 여기서 불가분자란 原子
를 염두에 두고 있음을 알할 나위가 없다. 運
動可能性과 無限可分性은 논리적으로 입증한
언란이 있다.

Aristoteles는 Democritos의 原子論
—즉, 不可分子의 존재—을 부정하였으나 그
것은 그가 可能의 無限을 생각하였기 때문이다.
즉, 현실적으로는 무한히 작은 불가분자는
는 존재할 수 없고 오직 분할의 가능성이 있
을 뿐이라고 그는 생각하였다 것이다. 여기에
는 이미 근대 수학에 있어서의 가장 중요한 과
계인 연속체의 문제가 제기되어 있다 연속체
는 적관적으로는 너무도 분명하지만 이것은 논
리적으로 침의하기는 매우 힘든 개념이다.

Aristoteles는 이 연속체의 특징을 무한가
분성이라는 관점에서 파악하였으나 그의 이
러한 견해가 연속체에 관한 충분한 정의가 아
나라는 것이 루프가 인식된 것은 19세기에 들
어서면서부터이다. 바꾸어 말하면 그만큼 오
랜 세월에 걸쳐 연속체의 특성이 무한가분성
으로 간주되어 왔던 것이다. Aristoteles가
무한가분성 즉 가능적 무한을 내세운 중요한
이유는 數學의 原子를 가정한 경우, 여러가지
로 로고적인 모순이 벌어질 가능성이 있다. 예
들어 그리스시대에 널리 알려진 'Democ-
ritos의 과파리스'라는 다음과 같은 문제
가 있다.

오른쪽 그림에서와
같이 원뿔을 밑면에
평행한 폭면으로 자
른 절단부분을 생각해
보면, 원뿔은 절단부
분을 모두 합친 것이
된다. 이때 서로 이
웃한 두개의 절단부분은 갈라지고도 할 수 있고 갈지 않으라고도 할 수 있다. 갈지 않으라고 하면 원뿔에는 ‘단게’가 있는 셈이 된다. 또 갈지 하면 원뿔은 원기둥이 된다.

이밖에도 비슷한 모순은 얼마든지 생각해 낼 수 있다. 하기야 ‘무한히 작은 상태로 존재하는’ 무한소라는 개념부가 모순적이다. 그것은 존재하는 이상 일정한 크기를 지녀야 하고 일정한 크기를 지니면 무한소가 아니고 유효한 것이 되기 때문이다. 그러나 이처럼 자비가 무한소의 개념은 모순을 내포하고 있음에도 불구하고 수학에서는 아주 쓰임새가 많다. 실제로 고대 그리스의 수학에서 이 개념이 쓰인 것인, 방광 보리로 동 원뿔의 불가분자로서 절단면을 생각한 것처럼 도형의 체적이나 면적 계산에 큰 도움이 되기 때문이다. Democritos 이래 무한소 또는 원자의 개념은 결국 다루어져온 이유는 바로 여기에 있었다.

\[a \therefore b \text{ 또는 } a \frac{b}{n} \]

라는 명제는 무한분할 가능성을 관한이 될 다른 표현이다. Aristoteles는 연속체의 특징을 무한분할 가능성이라는 개념과 연관지었다고 앞에서 말한 바가 있으나, Archimedes의 공리는 이것을 수학적으로 표현한 것이라는 할 수 있다.

2. 모순과 수학 - 실질적 무한의 Paradox

중세의 존재 무한의 압축시대로 알려진다. 그러나 사실은 반대로 그렇지 않았으며 오히려 여러가지 변에서 근대수학이 탄생시키는 신구적인 역할을 한 것이 중세였다고 할 수 있다. 이 준비작업은 특히 철학적-사상적 축면에서 이루어졌으나 이 점에서 중세는 고대의 수학과는 전혀 다른 근대수학 탄생의 준비단계로서의 역할을 다한 것이다.

이 중세시대, 특히 그 말기에 현실적 무한이 사람들의 관심을 끌었다. 그리스시대의 무한은 가능적인 형태로서만이 학문적 의미를 지켰으나, 중세에는 신학의 영향에 현실적 무한에 주목하게 된 것이다. 이 현실적 무한을 문제로 삼을 때를 본 부담치게 되는 문제는 그 모순적 성격이다. 가능적 무한에서는 늘 ‘앞’이 있고 줄곧 진행이 있을 뿐이므로 기기에는 모순은 나타나지 않는다. 그러나 현실적 무한에는 언제나 모순이 따른다. 앞에서 말했듯이 임종의 현실적 무한인 무한소는 모순을 지닌
Cantor集合論의 뒷받침으로서의 무한정리

개념이다.

근대수학은 운동의 수학으로서 현실적 무한을 필요로 하였으며, 따라서 이 역설적인 현실적 무한을 어떻게 해야 합리적으로 다룰 수 있는가를 중심으로 하여 타스케이어게 되었다. 현실적 무한에 원리적으로 따르수 밖에 없는 이 역설적인 성질을 유래므로 수계적으로 다른 사람은 특별한 카탈로크 추계강 Cusanus였다. 그는 ‘반대의 일치’라는 사상으로 유명하다. 신은 가장자리와 동시에 가장자리이며, 최대자와 최소자의 통일이다라는 사상이 그것이다. 예를 들어 정서적극원은 서로 대립하는 두형이며 서로 일치할 수는 없다. 지금 정서적극원의 변수를 차례로 늘어내려면, 정 5각형 정 6각형…, 정 n각형을 만들어도 이러한 다각형은 원과는 결코 일치하지 않는다. 그러나 변수를 무한히 많이 늘어나게 하면, 다각형과 원은 일치하게 된다. 즉, 무한히 세계에서는 다각형과 원은 일치한다.

Cusanus는 천체와 (= 신)를 무한의 깊이를 가진 티에 나타내었다. 그렇다면 무한의 반지름을 가진 티란 어떤 것인가, 또 중심은 어디에 있는 것일까? 이 ‘구’의 지름은 무한이기에 때문에 공간상의 임의의 점이 중심이 된다. 무한의 구에 대해서는, 두 점 사이의 유한의 거리는 무시할 수 있기 때문이다. 중심이 모든 곳에 있기 때문에 지름도 모든 곳에 있다. 또 구면상의 점은 공간속에 있기 때문에 의심이 없다. 그래서 중심의 지름의 구면등은 동일한 것이 되고 더 나아가서는 ‘중심이 구체화되어 일치한다’ ….. 그가 펼쳐낸 이러한 역설적인 세계는 그로스의 ‘한계주의’적인 세계관과는 너무도 동떨어져 있다. 이 차이는 결국 대답하기 무한을 가정하고, 현실적 무한에 관해서 끼리잡이 없이 따져보는지 아닌지 차이에는 비로소된다.

원과 잘선 사이의 ‘대립’을 해소시키는 도형의 무한성에 의하여 Cusanus는 신의 무한성을 증명적으로 표현하고 있다. 즉 수학에 있어서의 (다각형과 원, 원의 지름과 원주, 원의 관계등) 무한의 접근은 무한의 신성을 유한적인 사물로부터 인식하게 되는 과정을 상징한다고 본 것이다. Cusanus의 발을 직접 들려보자.

『인간의 지식 가운데서 수학적 지식만큼 확실한 것은 없다…』이 유일하게 정확한 인식인『수학의 정신을 통하여 정신은 자기 자신과 자신의 능력을 인식한다. 그리고 이 정신 속에서 만이 신성한 스스로를 드러낸다』* Cusanus의 이 ‘무한의 논리’는

「전체는 부분과 같다.」
「최대와 최소는 일치한다.」
「원은 기선이다.」
「원은 삼각형이다.」

………………

등의 ‘반대(개념)’의 일치‘가 성립하는 역설적인 논리학이다. 뒤집어 말하면 유한의 세계에서 갈등에 있는 각각으로는 역설적으로 받아 들여진 것이 바로 무한의 본질인 것이다. 무한과 유한은 직접적으로 비교할 수 없는 것이다. 무한은 유한의 연장이 아니라는 것을 깨달았던 Cusanus는 이점에서 확실히 무한을 인식하는 것 관문을 통과한 셬이다. 有限성에서는 아무리 큰 것일지라도 그보다 더 큰 것이 항상 있

* N.Cusanus, “Dedocta ignorantia”(1440 년)
를부터의 창조' (Creatio ex nihilo)와 관련해서 초월적인 신의 관념이 사람들의 마음속에 확고하게 뿌리를 넣게 된 경과이기도 하였다.

유한의 펼가 신비상인 신의 창조물이라는 것은 모순이므로, 우주는 무한히 큰 구이어야 한다고 Cusanus가 주장한 것은, Copernicus의 《천문학의 전개에 관한》이 출판되기 100년도 전이었다. 그의 이러한 주장은 무한히 빛은 공간 속에서 지구가 위치할 '중심'을 생각해야 하는 모순의 계가 흔들리는 관념이 있었다. 이 파라독스를 해결하기 위해서는,

『신은 그 중심의 모든 곳에 있고, 또 그 주름을 아무 곳에서도 찾을 수 없는 무한의 구』이어야 했다.

그러나, 이 단계에서는 Cusanus의 생각은 우주론에 별다른 영향을 미치지 못하였으며, Giordano Bruno(1548 ~ 1600년)가 Copernicus의 관점에서 무한우주론을 주장하기 전까지는 세상의 주목을 받지 못하였다. Bruno의 주장은 태양·지구·행성들로 이루어진 Copernicus의 태양계는 무한으로의 중심에 자리잡고 있다고 발不信오미험려설계로는 무한히 빛은 공간의 곳곳에 이러한 행성을 분포되어 있다는 것이다. 이 때문에 그는 별난 난이 백여씩 화학의 시대였으나(1600년), 그가 죽은지 반세기 전까지도 그의 영향은 점차 칠퇴한 것과 아리스토레스의 자연철학이 유전하게 잘되었다.

이보다 100여 년 후의 일이기는 하지만, 동북아시아의 변방인 한반도에서도 Bruno의 무한우주론과 밀접한 관련이 사대부 출신의 실
『현실의 무한과 수학』

Cusanus가 다루었던 무한은 다만 철학적인 내용의 것이었지만, 이것은 신학자인 그로서는 어떻게 보는가 하면, 이 Cusanus 보다 원인 수학적으로 حيث 현실적 무한을 다루었던 사람은 Galileo Galilei이다. Galilei는 Cusanus와는 달리 유한과 무한의 차이에 주목하였다.

그는, 공간은 이상 영역 수 없는 '불가 분자 (不可分者)'인 무한으로부터 이루어졌다고 주장하면서 현실적 무한을 대담하게 주장한다. 이 점에서 그는 고평의 원자론을 부활시킨 셈이다. 실제로 Democritos의 원자론이 수학적으로도 물리학적으로도 의미를 지니게 된 것은 Galilei부터이다. 그는 무한소란 메타를 위해서도 아주 대담하게 다루었으나 유한에 관한 개념을 그대로 써 무한을 이야기하는 것인가 싫어하는 것을 잊지 않았다.

Galilei의 '新科學對話' (1638년)의 '첫째 날'은 무한, 연속성이 그 내용으로되어 있는데, 여기서는 유한이 지닌 개념이 무한의 경우에는 통하지 않는다는 것을 다음과 같은 설계로 들어 설명하고 있다. 자연수와 계점수에는, 자연수의 집합(1, 2, 3, ..., n, ...)이 1개 1개로 대응한다는 것이다. 따라서 자연수 전체와 그 일부인 계점수 전체의 것수가 같다는

* 洪大容, 『簡軒書』, 鎬山問答
동안 수의 분포상태

이 사설로부터 자연수 전체의 갯수와 계급 수 전체의 갯수는 어느 쪽이 더 많을지 또는 서로 같다고 말 할 수 없다는 결론이 내려진다. 요컨데, '같다', '크다', '작다' 등의 성질은 유한한 세계에서만 의미가 지니는 유한의 세계에 동등이 되지 않는다. 만약 이러한 성질을 무한한 세계에 어찌 계급시키려고 하면 아주 가정한 말이 벌어지고 있다는 것이 갈릴레이가 내린 결론이다. 알고 보면 무한은 유한을 넘어선 것임이기에 유한에 관한 성질이 무한한 세계에서 성립하지 않는다 하여도 조금도 이상한 일이 아닌 것이다.

이 계급수에 관한 '무한의 과다독스 (?)'는 역사적으로 많은 흔적을 띠다. 엄격한 의미의 '무한의 산수'가 건설된 것은 19세기에 일어난다. 이때 무한의 정의로서 쓰인 것은 바로 이것이었다. 즉, '무한집합근과 무한진 전체의 크기'가 같은 집합이라고 정의되었다. 위의 Galilei의 보기에서 말한다면, 계급수 전체는 자연수 전체의 부분이지만 이 두 집합은 '1대 1 대응'을 하고, 따라서 '크기'가 같은 것이다. 이 무한의 성질은, 무한론 즉 무한수학의 이론이 완전히 확립되는 19세기 이전에 로 '무한의 과다독스' 중의 대표적인 보기에 종합하고 있었다. 이 과다독스가 특히 문제로 되었던 것은, 그리스 이래 유럽수학의 기본적인 '동'으로서 받아들여진 Eukleides의 (원론) 에 실린 공리들 전체는 부분보다 크다'와 모순되기 때문이었다. Cusanus도 이와 비슷한 생각을 품었으나, 현실적 무한이 지난 이 성질을 처음으로 명명한 첫은 Galilei였다.

이 교묘한 과다독스는, 그리스시대 였다면 현실적 무한을 부정하는 좋은 보기가 되었을 것이다. 그러나 Galilei의 시대에는, 이미 이러한 소극적인 태도로 무한을 대화할 수 없을 만큼 상황이 크게 변해 있었다. 물리학이나 과학에서는 융동의 개념이 중요해 되는데, Galilei가 연구한 것은 역학중에서도 동력학에 관련해였다. 옵동의 문제에는 일종의 현실적 무한이 따르기 마련이다. 이 때문에 Galilei 자신도 현실적 무한에 관해 적극적인 관심을 기울였던 것이다. 그러나 Galilei는 현실적 무한을 알리적으로 체계화하는 단계에는 이르지 못하였다. 무한론이 체계적으로 다루어지기 위해서는 유한집합 사이에서 처럼 무한집합 사이의 비교가 가능해야 한다. 이것은 G.Cantor의 집합론의 반성까지도 기대해야 하지만 여기서는 우선 B.Bolzano(1781~1848)의 '무한의 과다독스' (1851년)에 실린 보기를 통해 무한의 유발한 성질에 대해 알아보기로 하자.

다음과 같은 절의 무한급수와 있다고 하자.

\[S = a - a + a - a + \ldots \ldots \ldots \ldots \cdot (1) \]

* Dedekind, "Was sind und was sollen die Zahlen?" (1888).
이 금수의 함을 구하기 위하여 다음과 같이 나타낼 수 있다.
\[S = (a-a) + (a-a) + \cdots + 0 + 0 + \cdots + (1) \]
이것으로부터 \(S = 0 \)이라는 결과를 얻는다. 또 (1)은,
\[S = a - (a-a) - (a-a) \cdots = a - 0 = a \cdots (1) \]
이 (1)의 결과를 대입하면
\[S = a - S \quad \text{즉,} \quad S = a / 2 \quad \cdots \cdots \cdots \cdots \cdots \cdots (1) \]
이다.

결국, 식(1)로부터는 서로 모순된 세가지 답을 얻을 수 있다. 요컨대, 이 금수는 수학적으로 의미가 없는 것이다. 왜?

당연한 이야기이지만 아무도 한 없이 닦끔은 계속할 수 없다. 예를 들어 우리가 식
\[S = \sum_{1=1}^{n} a_i = a_1 + a_2 + a_3 - \cdots \cdots \cdots \cdots \cdots \cdots \]
을 생각할 때, 수열
\[a_1, \quad a_1 + a_2, \quad a_1 + a_2 + a_3, \quad \cdots \cdots \cdots \cdots \cdots \cdots \]
즉, 수열
\[S_n = \sum_{1=1}^{n} a_i \]
가 수렴을 하고, 극한값 'S'을 갖는다는 것을 전체로 삼는다. 그러나
\[a - a, \quad a - a + a, \quad \cdots \cdots \cdots \cdots \cdots \cdots \]
즉, 0, a, 0, a, 0, \quad \cdots \cdots \cdots \cdots \cdots \cdots \quad 과 같은 수열은 수렴하지 않는다(수렴하지 않 는 수열을 수렴하는 것으로 간주했다는 점이 혼란의 원인이다.) 따라서 식(1)은 의미가 하
다.

이는 무한금수에 산수의 덧셈 규칙을 무 터내고 적용하면 모순이 생긴다는 것 즉, 유한 개의 항에 관한 산수의 법칙을 형식적으로 나 태내어진 무한금수에 그러대로 옮길 수 없음을 논리적으로 설명하였다는 점에서 주목을 끈다.

중앙과 근세의 세계관 사이의 가장 큰 차이
는 우주관 - 세계관의 일대 전환이었다. 그 중
에서도 중세의 지배적인 우주관 즉, 지구를 중
심으로 하여 그 둘레를 둘개의 천구가 돌고 있
다고 하는 유한적인 우주관이 근대적인 무한우
주관으로 바뀌어졌다는 것은 아주 중대한 의
미를 지닌다. 이것이야말로 중세의 사상을 밀
뿌리부터 뒤쫓는 '태풍의 눈' 이었으며 이 문
제는 단순히 지구의 '미인들에게' 가이, 중세 천문학의
관념의 차이로 이론적으로 그치는 것은 아니었다. 그 당시의 '사
인' 이 사람들의 마음을 열어내 큰 혼란속에
봐쳐들게 하였는데에 대한 문학자 A.France
는 다음과 같이 묘사하고 있다.

「지구는 세계의 중심이고, 모든 천체가 그 주위를 회전하고 있다. 사람들은 하늘을
우러러 보면서 조용히 지 대시에 눈길을 보내고 있었다.......

옛 사람들은 이러한 상상이이나 행성아래에 태어나서 행복한, 평화롭고 또는 우수한 생
활을 보냈지만, 그러한 상상이나 행복은 이제 사라지고 없다. 왕궁의 본토인 귀신
은 무너지고 말았다. 지금의 사람들의 눈

* B.Balzano, “Paradoxien des Unendlichen”(1851년) S.58.
길과 상남은 창공의 무한한 심연속으로 한 없이 빠져들어갈 뿐이다. 그리고 행성의 적편에 보이는 것은 천사받은 자들이나천사들 이 노리는 과인하늘에 아니고, 차의 눈에는 비치지 않는 무한한 향연의 행렬을 이끌고 회전하고 있는 무수한 태양들이다. 이 무한대의 우주공간 속에서, 우리의 태양은 우리에게 있어서 한반 풍어내는 가스의 포탈에 지나지 않으니, 지구는 한 방울의 진흙에 저지 않다.

위의 A. France의 표현을 빌어 말한다면, 우주의 유일한 중심이었던 지구가 '무수한 태양'으로 바뀌었고 '만든 인간없는' 아닌 무한의 우주공간을 우리의 것으로 받아들이기까지 사람들이 방실이고 무려하며 썩어서 피를 흘렸다.

요컨대, 무한이 사람들의 마음속에 자리잡게 되기까지는 고난에 찬 아주 긴 세월이 흘라 가야 하였지만 이 무한 없이는 과체에 있어서의 천체운동에 관한 이론도 나무의 자연과학도 심지어는 아직도 적절한 조차도 탐색하지 않 았다. 여기서 분명히 할 것은 무한의 등장은 이것이 스스로 찾아온 결과가 아니라 우주나 무한을 스스로 자신의 것으로 삼으려는 '인간'의 적극적인 자각의 결과였다. 나무도 유명한 다음과 Pascal의 말은 이 사실을 상징적인 표현이란까진 전해주고 있다.

『 인간은 한 개의 결과에 지나지 않는다. 자연 가운데 가장 흔한 결과에 지나지 않는다는. 그러나 그것은 생각하는 결과이다. 이것은 짐작해 동겨버리기 위해서 우주 전체가 무작할 필요는 없다. 한 종의 독기(聴氣) 한 방울의 물로도 충분히 그를 죽일 수 있다. 그러나 우주가 그를 죽이버리다 하여도, 인간은 그를 죽이는 자 보다 고귀한 존재이다. 왜냐하면 인간은 자신이 죽는다는 것도 우주가 힘에 있어서 자신보다 우월하다는 사실을 알고 있기 때문이다. 우주는 그것을 모르고 있다.』 "Pensées"

이 Pensées의 저자는, '수학의 근기름'이라는 방법을 처음으로 사용한 수학자이기도 하였다. 수학적 근기름이야말로 우주의 개념을 정변 에서 다른 수학적인 방법이었다. 수학적 근기름이란 한 마디로 말해 '여러 사실이 모 든 자연수에 관해서 설명한다.'는 것을 증명하는데 쓰이는 방법이지만, 사실은 이것은 단순히 하나의 증명법에 끝나지 않는다. 여기에는 '자연수 전체'란 무엇인가에 대한 무한한 생각이 전체가 되어 있다는 사실을 보아 넘겨서는 안된다.

자연수는, 1로부터 시작하여 차례차례 나아감으로써 비로소 그 전체를 파악할 수 있다. 바로 이 사실 때문에 어떤 성질 p(n)이 모든 자연수에 대해서도 성립한다는 것을 발하기 위 해서는, 먼저 n = 1일 때로 따져보고 이어서 n = k일 때 성립하다고 할 때, n = k + 1일 때에도 성립한다는 것을 따지는 두 단계의 증명법이 힘을 발휘한다. 거듭 강조하지만, 자연 수 1, 2, 3……은 오해전부터 알려져 있었으나 이것을 n 다음에는 n + 1이 이어진다.』라는 규칙 (= '생성규칙')을 지닌 '한 없이 계속하는 수열'로 보고, 그 전체를 하나로 묶어서 생각하게 된 것은 그렇게 오해된 일은 아니다.

-12-
이 수학적 귀납법이아닐 자연수 전체라는 `무한자` (無限者)를 수학의 대상으로 삼는 적극적인 방법의 출현을 알리는 것이었다.

결론: **mathesis universalis**

로서의 数學

수학은 흔히 계산이나 증명 등을 주로 일상

는 학문으로 여겨지고 있다. 물론 수학에는 이

러한 면이 있는 것이 사실이고, 현재 국립학교,

중학교, 고등학교 그리고 대학에서 배운 수학

의 내용도 모두 이런 것들이다. 여기서 말하는

수학이란, 과거의 중국이나 한국의 수학은

뜻할 아니고 유럽으로부터 근래에 받아들인

수학이다. 이 수학은 알고보니 계산이나 증명

만을 다루는데 그치지 않는 놀라운 정도로 넓고

깊은 영역을 지니고 있다. 즉 과학기술과의 연

관은 끝을 알 수 없고 철학이나 사상 논리이

는 예술들과도 깊은 관계가 있는 인류문화학에

깊이 묻어 내린 가장 깊은 학문 세계인 것이다.

그렇다면 수학은 예당초부터 이렇게 폭넓은

내용을 갇고 있었던 것일까? 바꾸어 말하면

이 학문은 그 긴 세월동안 수학이라고만 다

다루므로 부르기 수 있는 일련된 성격을 그대로 줄

곧 지탱해온 것일까?

수학을 영어로 mathematics라고 부르지만,

이 날말의 어원은 그리스말의 `마테마타` (mathemata, μαθηματα)이며, 원래는 `배

위야할 것`, 즉 학문의 복수형을 나타냈다. 일반적인 학문을 뜻하였던 이 날말이 오

늘날 수학이라는 특정한 학문을 가르키게 된 연유를 알아보는 것은 흥미있는 일이다. 이

제부터 그 역사에 관해서 살펴보기로 하자.

`Pythagoras의 정리`로 잘 알려진 Py-

thagoras가 남. 이테리의 Crotone라는 도

시에 세운 학교에서는 영혼을 극화하는 방법으

로 음악. 천문학. 기확학. 數論의 네가지 `mathemata’ (= 학문)을 학생들에게 가르쳤는

데, 여기서는 특히 `만물은 수 (數)이다.`

라는 신조가 선정되고 있었다 한다. 그 사실

여부를 확인할 수는 없지만, 여겼던 당시에는

수나 도형에 관한 연구가 아마도 종교적인 이

유 때문에 행해지고 있었던 것은 틀림없다. 그

후 약 2백여년이 지나서 Platon이 아테네의

교외 Academia의 숲속에 세운 학교 `Acade-

mia’ (B.C 368년) 입구에 `기확학을

모르는 자는 이 문을 들어서지 말라`라는 말

을 남기기도 하였는데, 실제로 Pythagoras

과 이례의 네개의 `mathemata’ (학문)

특히 기확학이나 수론은 Platon의 철학과 깊

은 연관이 있다.

`mathemata’라는 날말이 앞서 말했던

음악. 천문학. 기확학. 수론등을 주로 나타내

고 이 `四科’를 연구하는 사람을 `mathematicos’ (數學者)라고 부르게 된 것은

platon의 아카데미아에서였으며, 그의 제자

Aristoteles의 학교에서 그 위치를 굳혔다.

우주는 본래 수학적인 질서를 지니고 있으며,

따라서 삼단은 학문은 주로 언제나 수학적인

적임새를 갖다고 하는 플라톤의 非理思想은

Pythagoras과의 저 종교적 `mathemata

(학문)의 영향이 들렸었다. 이 경향은 그

후의 유럽에 있어서의 학문적 전통의 중요한 특

징의 하나가 되었다.

Pythagoras 이례의 네개의 mathemata가

`四科’ 즉 `quadrivium’으로 불리어서

고, 문법. 修辭学. 論理学으로 된 `三科’ (`trivium’)와 더불어 `自由學縣’(artes
liberales)를 이루게 된 것은 6세기 중세의 수도원에서이다. 그러나 Pytagoras — Platon에서 유럽 중세에 걸친 mathematicia가 모두 철학의 ‘Mathematics’(数學)의 바탕이 된 것은 아니었다. 현재의 mathematicia는, 실제로 기점은占數術이나占星術 또는‘수의 철학’ 정도의 내용에 지나지 않는‘四科’중의 수론이나天文학등의 mathematica를 부정하고 그것들을 넘어설 수 있게 되면서 태어난 것이다. 수학으로서의 mathematica 즉 그리스의 기학을 현재의 우리에게 전해주었던 것은, 실은 유럽인들이 아니고, 7세기에 갑 자기 문명의 꼭을 피우게 하려는 아라비아인들이었다. 즉, 우리가 지금 그 전통을 이어받고 있는 Platon 이래의 그리스적 수학은, 아라비아 문화라는 용량으로 속에서 다시 다듬어졌다. 이에 이론 로네상스로부터 17세기에 걸친 시대에 또 다시 이 수학은 새로운 환경의 ‘도전’에 대응하면서 전에 볼 수 없는 학문의 형태를 갖추게 되었다. 이것이 오늘날의 mathematics의 직접적 조상인 것이다.

13세기에는 흔히 ‘中世의 로네상스’로 불리어질 만한 학문의 범주상 극히 중요한 의의를 지닌 시대이다. 이 시대는 크리스티아노 신앙과 그리스의 학문을 통합한 이로바스클라 철학이 확립된 시대였다. 여기서 말하는 그리스의 학문이라면, 주로 Aristoteles의 자연학이 중심을 이룬 것이지만 고대·중세를 통하여 그리스적 학문의 전통은 대체로 Platon의 사상이 중심이었으나 이 시대 이후로는 아라비아를 거쳐 옮겨진 Aristoteless의 反宗教의 자연학이 크리스티아노의 음리학과 결합하여 조화있는 체계를 이루게 되었다. 중세 이후의 수도원·학교가 대학의 모습을 갖추기 시작한 것도 이 무렵의 일이었으며, 파리대학은 1200년, Oxford 대학은 1214년에 창설되었다. 이러한 대학의 바탕에서도 새로운 학문의 색이 여기저기서 트기 시작하였다. 한편 ‘四科’에 속해 있으면서도 유럽이나 전문학은 15,16세기에는 이미 mathematica(數學)로는 간주되지 않았고, 그 대신 그리스의 인도의 양쪽으로부터 전통을 이어받은 삼각법이 새로운 마테마티카스의 면역으로 기어든다. 플랫코스의 수학자 P.Viete(1540 ~ 1603년)가 쓴 (Canon mathematics,1579)이라는 이름의 삼각법의 책은 그 사실을 단적으로 말해주고 있다. 이제 ‘mathematics’라는 말이 체의 표준으로 쓰이기까지 할 정도로 그 '시민권'을 담당적으로 획득하게 된 것이다.

‘mathematics’의 어원이 mathematica라는 것. 따라서 이 말에는 ‘논증체계(論證體系)를 지닌 통일적학문(統一的學問)’이라는 본래의 뜻이 다소나마 담겨져 있는 것은 당연하지만, 특히 로네상스 이후 부활하였던 Platon의 数理思想의 영향 때문에 mathematics는 이 경향을 두드러지게 풍겼다. 그러나 ‘통일적 학문’으로서의 mathematics를 실제로 내세운 것은 Descartes와 Leibniz였다.

Descartes의 유명한 저서 (方法序説) (1637)은, 정확하게는 ‘이성(理性)을 바르게 이끌고 온갖 학문에 있어서 전리를 찾기 위한 방법 및 이 방법의 시도(試圖)로서의 과학(光學)·기상학(氣象學)·기하학’이라는 이름이었다. 그러나 Descartes의 혼란 기하학(解析幾何學)이 태어나기 까지에는 ‘(그의) 이성을 바르게 이끌고 온갖 학문의 진리를 찾기 위한’ 노력이 여러가지로 배출되어

-14-
Cantor集合論의 무한으로서의 무한리념

것을을 알 수 있다. 비록 실험은 되지 않았으나 메카르트가 구상하였던 통일적 학문으로서의 수학, 즉 'mathesis universalis'의 꼼은 Leibniz에 의해서 더욱 강하게 추진되었다.

Leibniz이 말로 아울러 인간의 사고 자체를 기호의 수학의 형태로 재현하려고 하였던 최초의 시도였음을 것이다. 비우단학은 Newton과 Leibniz에 의해 거의 동시에 발견되었지만 오늘날 사용되어 있는 기호가 모두 Leibniz의 것이라는 사실에서도 알 수 있는 바와 같이 Leibniz의 기호법은 아주 뛰어난 것이었다. 그러나 이 미적문학은 그가 목표로 삼은 기호적 수학(= '보편(수학)'의 한 보기에 지나지 않았다. 수학야말로 Leibniz에게는 인간의 사고의 세계를 가장 깊숙히 파고드는 학문 -즉 '보편학' -이었던 것이 다.

Platon, Aristoteles, Pascal, Descartes, Leibniz등은, 대개 철학자로서만 알려져 있으나 이 사람들은 수학의 역사상 빼 빼낼 수 없는 '수학자' 이기도 한 것이다. 한편 이것은 여기서도 이야기한 바와 같이 수학과 종교도 사상면에서 의외로 깊은 인연이 있다. 다음 인용문은 13세기의 신학자 Thomas Aquinas(1225 ~ 1274)의 종교관에 관한 해설인데 여기에는 그리스인의 수학의 정신이 두려운 영향이 반영되어 있다.

지금도 수학이라는 학문의 역사상의 유럽에서는 사상이 역겨지는 역사 (=思想史)와 깊은 연관이 있을 수 있다. 즉 유럽인들에게는 수학은 적어도 한달'도구' 이상의 것이었다. 마지막으로 다시 강조해 두고자 하는 것은 '수학의 무한리념', 즉集合論은 종교적·철학적
무한관을 배경으로 삼은 학문('mathemata')
으로서 그 체계를 이루었다는 사실이다. 이것
은 집합론이 단순히 ‘집합의 수학’이나 ‘집
합의 이론’에 그치지 않음을 돼한다. 종교나
사상이나 하는 수학 이전의 영역을 여기 저기
해치본 이유는 바로 이 때문이었다. 실제로 집
합론에 대한 진정한 이해는 이 학문이 탄생하
g기까지의 토대적 배경에 대한 인식 없이는 이
부여질 수 없는 것이다.

参考文献

Aristoteles, Physica
Aristoteles, Methaphysica
B.Bochner, The Role of mathematics
in the rise of science, 1966.
B.Bolzano, Paradoxiens des Unendlich-
chen, 1851.
N.Cusanus, De docta ignorantia.1440.
J.W.Dauben, Georg Cantor, His mathe-
matics and philosophy of the inf-
T.Heath, Mathematics in Aristotle ,
1949.
C.Hempel, On the Nature of Mathema-
A.Heyting, Intuitionistic Views on
the nature of Mathematics, 1974.
M.Steiner, Mathematical Knowledge,
1975.
F.Waisman, Introduction to mathem-
atical Thinking, 1959.