# Synthetic Studies on Fused Nitrogen-heterocycles from $N$-Amino- $N, N^{\prime}$ dihydrodiazinediones (II). Condensation of $N-A m i n o-N, N^{\prime}-$ dihydrodiazinediones with $\alpha, \beta$-Unsaturated Carbonyl Compounds 

Sung Chul Shin ${ }^{\boldsymbol{*}}$. Kyung Ho Kang, and Youn Young Lee*<br>Department of Chemistry, Seoul National University, Seoul 151-742<br>Yang Mo Goo<br>Department of Pharmacy, Seoul National University, Seoul 151-742. Received September 4, 1989


#### Abstract

The condensation of 1 -amino-1,2-dihydro-3,6-pyridazinedione (1) and 2-amino-2,3-dihydro-1,4-phthalazinedione (2) with mesityl oxide or 3-penten-2-one in acetic acid-ethanol (1:1) gave 3,4,6,9-tetrahydro-6,9-dioxopyridazino $11,2-a \mathbf{I} 1,2,3$ Itriazines (9,11) and 3,4,6,11-tetrahydro-6,11-dioxo(1,2,3)triazino[1,2-b)phthalazines (10,12), respectively. The condensation of 1 and 2 with crotonaldehyde, cinnamaldehyde or acrylaldehyde under the same reaction condition gave only N -alkylidene derivatives (3-8). When the $N$-alkylidene derivatives isolated from the reaction of 1 and 2 with crotonaldehyde and cinnamaldehyde (3-6) were refluxed in acetic acid, the corresponding heterocyclic compounds (13-16) were obtained.


## Introduction

Although various fused $1,2,3$-triazines have been reported ${ }^{1}$, only a limited number of fused $1,2,3$-triazines in which two nitrogen atoms are common to two adjacent ring have been synthesized. ${ }^{2}$

We previously reported ${ }^{3}$ that the condensation of 1 -amino-1,2-dihydro-3,6-pyridazinedione (1) and 2-amino-2,3-dihy-dro-1,4-phthalazinedione (2) ${ }^{4}$ with acetylacetone, mesityl oxide or diethyl acetylenedicarboxylate using acidic cyclizing agents yielded the novel heterocyclic ring system, pyridazino $[1,2-a][1,2,3]$ triazines and $[1,2,3]$ triazino $[1,2-b]$ phthalazines, respectively. Recently we also reported ${ }^{5}$ the condensation of 1 and 2 with various 1,3 -dicarbonyl compounds using polyphosphoric acid as a cyclizing agent to afford 6,9-dihy-dro-6,9-dioxopyridazino $[1,2-a][1,2,3]$ triazines and 6,11 -di-hydro-6,11-dioxo[1,2,3] triazino[1,2-b]phthalazines, respectively, in good yields. As a part of our continuing study on the construction of heterocyclic ring systems, we are examining the condensation of 1 and 2 with various bifunctional carbonyl compounds. In this report we wish to describe the synthesis of $3,4,6,9$-tetrahydro-6,9-dioxopyridazino $[1,2-a]$ [1,2,3]triazines and 3,4,6,11-tetrahydro-6,11-dioxo[1,2,3]triazino $[1,2-b]$ phthalazines from 1 and 2, respectively, by condensation reaction with $a, \beta$-unsaturated carbonyl compounds.

## Results and Discussion

When we examined various acidic cyclizing agents such as sulfuric acid, polyphosphoric acid, acetic acid etc. for the condensation of 1 or 2 with $a, \beta$-unsaturated carbonyl compounds to obtain fused 1,2,3-triazine derivatives, acetic acid was found to be the most effective. Thus, compound 1 or 2 was suspended in acetic acid-ethanol (1:1) which was maintained at $60^{\circ} \mathrm{C}$. To this mixture mesityl oxide or 3-pen-ten-2-one was added to give homogeneous solution. It was

[^0]further stirred for 1 hr to give cyclized product, 3,4,6,9-tetrahydro-6,9-dioxopyridazino [1,2-a] [1,2,3kriazines (9 and 11) or 3,4,6,11-tetrahydro-6,11-dioxo [1,2,3]triazino-[1,2-b]phthalazines ( 10 and 12) in moderate yields ( $50-60$ $\%$ ). When 1 or 2 was reacted with crotonaldehyde, cinnamaldehyde or acrylaldehyde under the same condition, no cyclized products were obtained. Only N -alkylidene derivatives (3-8) were obtained in good yields ( $73-90 \%$ ).

When $N$-alkylidene derivatives were isolated and refluxed in acetic acid for $2-6 \mathrm{hr}$, the ones, $3-6$ were converted to the cyclized products ( $\mathbf{1 3 - 1 6}$ ) in $13-55 \%$ yields, whereas the others, 7 and 8 were not converted to the cyclized products. Attempts to obtain these cyclized products directly from the reaction of 1 or 2 with crotonaldehyde or cinnamaldehyde by refluxing in acetic acid were failed.

The cyclized products (9-16) did not show any amino or enolic hydroxy absorption in the IR spectra and showed molecular ion peaks in the mass spectra. The ${ }^{1} \mathrm{H}$ NMR spectra of 9 and 10 exhibited singlet at $\delta 2.57$ and 2.50 , respectively, for the geminal $\mathrm{C}-3$ protons. The compound 11 and 12 showed doublets of doublets around $\delta 2.68-2.78 \mathrm{~J}=16$ and 6 Hz ) and $2.73-2.83(J=16 \mathrm{~Hz}$ and 6 Hz$)$ for the geminal $\mathrm{C}-3$ protons. The compound 13-16 showed triple doublets around $\delta 2.42-2.87(J=19,5$ and 2 Hz$)$ and 2.84-3.17 $(I=19$, 7 and 2 Hz ) for the geminal $\mathrm{C}-3$ protons. The ${ }^{1} \mathrm{H}$ NMR data for $\mathrm{C}-2, \mathrm{C}-3$ and $\mathrm{C}-4$ protons in the compound $9-16$ are summarized in Table 1.

## Experimental

Melting points were recorded on a Electrothermals digital melting point apparatus and are uncorrected, ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian EM-360, Bruker AC 80 or Varian XL- 100 NMR spectrometer and the data were given in $\delta$ units downfield from TMS. IR spectra were obtained with Perkin-Elmer 283 infrared spectrophotometer. Mass spectra were measured with Jeol JMS -DX 303, Hewlett Packard 5945A or VG 12-250 mass spectrometer.

Analytical tlc was done on Silica gel plates, $60 \mathrm{~F}_{254}(\mathrm{E}$.

1 or 2

$1 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$1 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$2 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}$
$2 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}$
$3 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{CH}_{3}$
$3 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{CH}_{3}$
$4 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{CH}_{3}$
$4 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{CH}_{3}$
$5 R^{1}=R^{2}=R^{3}=R^{4}=H, R^{5}=P h$
$5 R^{1}=R^{2}=R^{3}=R^{4}=H, R^{5}=P h$
$6 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{Ph}$
$6 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{Ph}$
$7 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{H}$
$7 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{H}$
$8 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{H}$
$8 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{H}$
$9 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{CH}_{3}$
$9 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{CH}_{3}$
$10 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{CH}_{3}$
$10 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{CH}_{3}$
$11 R^{1}=R^{2}=R^{4}=H, R^{3}=R^{5}=\mathrm{CH}_{3}$
$11 R^{1}=R^{2}=R^{4}=H, R^{3}=R^{5}=\mathrm{CH}_{3}$
$12 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{5}=\mathrm{CH}_{3}$
$12 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{5}=\mathrm{CH}_{3}$
$13 R^{1}=R^{2}=R^{3}=R^{4}=H, R^{5}=\mathrm{CH}_{3}$
$13 R^{1}=R^{2}=R^{3}=R^{4}=H, R^{5}=\mathrm{CH}_{3}$
$14 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{CH}_{3}$
$14 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{CH}_{3}$
$15 R^{1}=R^{2}=R^{3}=R^{4}=H, R^{5}=P h$
$15 R^{1}=R^{2}=R^{3}=R^{4}=H, R^{5}=P h$
$16 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{Ph}$
$16 \mathrm{R}^{1}+\mathrm{R}^{2}=(\mathrm{CH}=\mathrm{CH})_{2}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{Ph}$

## Scheme 1

Table 1. ${ }^{1} \mathrm{H}$ NMR Data for $\mathrm{C}-2, \mathrm{C}-3$ and $\mathrm{C}-4$ Protons in the Compounds 9-16

| Compounds | $\mathrm{C}_{2}-\mathrm{H}$ | $\mathrm{C}_{3}-\mathrm{H}$ | $\mathrm{C}_{4}-\mathrm{H}$ |
| :---: | :---: | :---: | :---: |
| 9 |  | 2.57(s) |  |
| 10 |  | 2.50(s) |  |
| 11 |  | $2.68(\mathrm{dd}, J=16$ and 6 Hz$) 4.00(\mathrm{sext}$,$J=6 \mathrm{~Hz})$ |  |
|  |  | 2.73 (dd, $J=16$ and 6 Hz ) |  |
| 12 |  | 2.70 (dd, $J=16$ and 6 Hz ) | $\begin{aligned} & 4.00(\text { sext, } J= \\ & 6 \mathrm{~Hz}) \end{aligned}$ |
|  | $2.83(\mathrm{dd}, J=16$ and 6 Hz$)$ |  |  |
| 13 | $\begin{gathered} 7.37(\mathrm{dd}, J=5 \\ \text { and } 2 \mathrm{~Hz}) \end{gathered}$ | $\begin{aligned} & 2.42 \text { (ddd, } J=19,5 \text { and } \\ & 2 \mathrm{~Hz} \text { ) } \end{aligned}$ | $\begin{aligned} & 5.48 \text { (dquintet, } \\ & J=7 \text { and } 2 \mathrm{~Hz}) \end{aligned}$ |
|  |  | 2.84 (ddd, $J=19,7$ and |  |
|  | $\begin{gathered} 7.38(\mathrm{dd}, J=5 \\ \text { and } 2 \mathrm{~Hz}) \end{gathered}$ | 2.43 (ddd, $J=19,5$ and | 5.63(dquintet,$J=7 \text { and } 2 \mathrm{~Hz}$ |
| 14 |  | $2 \mathrm{~Hz}$ |  |
|  |  | $\begin{aligned} & 2.92(\mathrm{ddd}, \\ & \mathrm{Hz}) \end{aligned}$ |  |
|  |  |  |  |
| 15 | $\begin{gathered} 7.43(\mathrm{dd}, J=5 \\ \text { and } 2 \mathrm{~Hz}) \end{gathered}$ | 2.79(ddd, $J=19,5$ and 2 Hz ) | $\begin{aligned} & 6.31(\mathrm{dd}, J=7 \\ & \text { and } 2 \mathrm{~Hz} \text { ) } \end{aligned}$ |
|  |  | 3.06(ddd, $J=19,7$ and 2 |  |
|  |  | Hz ) |  |
| 16 | $\begin{gathered} 7.54(\mathrm{dd}, J=5 \\ \text { and } 2 \mathrm{~Hz}) \end{gathered}$ | 52.87 (ddd, $J=19,5$ and $2 \mathrm{~Hz})$ | $\begin{aligned} & 6.61(\mathrm{dd}, J=7 \\ & \text { and } 2 \mathrm{~Hz} \text { ) } \end{aligned}$ |
|  |  | 3.17(ddd, $J=19,7$ and 2 |  |
|  |  | Hz) |  |

Merck). Column chromatography was done on a cohumn packed with Silica gel 60 ( $70-230$ mesh ASTM, E. Merck). 1-Amino-1,2-dihydro-3,6-pyridazinedione and 2- amino-2,3-dihydro-1,4-phthalazinedione were prepared by the method described in the literature ${ }^{4,5}$. Other chemicals and solvents were purchased from commercial sources and used without further purification.

3,4,6,9-Tetrahydro-2,4,4-trimethyl-6,9-dioxopyri-dazino[1,2-a][1,2,3]riazine(9). To a stirred suspension of 1 -amino-1,2-dihydro-3,6-pyridazinedione ( $1,1.0 \mathrm{~g}, 7.8$ mmol) in 20 ml of acetic acid-ethano ( $1: 1$ ) preheated to $60^{\circ} \mathrm{C}$ was added mesityl oxide $(0.76 \mathrm{~g}, 7.8 \mathrm{mmol})$ in small portions, producing a green solution. After stirring for 1 hr at $60^{\circ} \mathrm{C}$, the solvent was evaporated to give a residue. To the residue was added diethyl ether ( 50 ml ) and the mixture was allowed to stand at room temperature, yielding a solid product which was recrystallized from ethyl acetate to give $0.80 \mathrm{~g}(57 \%)$ of pure 9: mp $162^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CCH}_{3}\right.$ ), 2.57(s, 2H, $\mathrm{CH}_{2}$ ), 6.87(d, $1 \mathrm{H}, J=10.8$ $\mathrm{Hz}, \mathrm{CH}=), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{CH}=) ; \mathrm{IR}(\mathrm{KBr}) 1630$, $1370,1250 \mathrm{~cm}^{-1}$; MS $m / e 207\left(\mathrm{M}^{+}, 28.6\right), 192(3.5), 164(5.3)$, $138(11.5), 136(3.5), 110(3.5), 82(100), 56(49.1), 54(64.5)$, 41(67.1).

3,4,6,11-Tetrahydro-2,4,4-trimethyl-6,11-dioxo[ $1,2,3$ ] triazino [1,2-6]phthalazine(10). Compound 10 was prepared from 2-amino-2,3-dihydro-1,4-phthalazinedione ( $2,1.0 \mathrm{~g}, 5.6 \mathrm{mmol}$ ) and mesityl oxide $(0.59 \mathrm{~g}, 6.0 \mathrm{mmol})$ by a similar method. The major product was isolated by column chromatography using chloroform-ehtanol (1:1) as an eluent and recrystallized from ethyl acetate-ether $(0.85 \mathrm{~g}$, $50 \%$ ): mp $124^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CCH}_{3}\right), 2.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.66-8.43(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$; $\mathrm{IR}(\mathrm{KBr}) 1630,1370 \mathrm{~cm}^{-1}$; MS $m / e 257\left(\mathrm{M}^{+}, 100\right)$, $2.42(11), 214(10), 188(80.3), 186(3), 160(9), 132(12), 104(65)$, 56(49.1), 41(36).

3,4,6,9-Tetrahydro-2,4-dimethyl-6,9-dioxopyridazino $[1,2-a][1,2,3]$ triazine(11). Compound 11 was prepared from $1(1.0 \mathrm{~g}, 7.8 \mathrm{mmol})$ and 3 -penten-2-one ( $0.66 \mathrm{~g}, 7.9 \mathrm{mmol}$ ) by a similar method. The major product was isolated by column chromatography using ethyl acetate as an eluent and recrystallized from ethyl acetate ( $1.0 \mathrm{~g}, 66 \%$ ): $\mathrm{mp} 112{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDC}_{3}\right) \delta 1.17\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CCH}_{3}\right)$ 2.18 (s, $3 \mathrm{H}, \mathrm{N}=\mathrm{CCH}_{3}$ ), 2.68 (dd, $1 \mathrm{H}, \mathrm{J}=16$ and $6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$ ), 2.73 (dd, $1 \mathrm{H}, J=16$ and $6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$ ), 4.00 (sext, $1 \mathrm{H}, J=6 \mathrm{~Hz}$, $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz},=\mathrm{CH}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}$, $=\mathrm{CH})$; $\operatorname{IR}(\mathrm{KBr}) 3000,1720,1660 \mathrm{~cm}^{-1}$; MS m/e $193\left(\mathrm{M}^{+}\right.$, 8.1), $178(5.3), 150(1.3), 124(3.1), 122(2.2), 96(5.5), 82(70.3)$, 54(76.5), 41(38.8).

3,4,6,11-Tetrahydro-2,4-dimethyl-6,11-dioxo-[1,2,3]triazino[1,2-b]phthalazine(12). Compound 12 was prepared from $2(1.0 \mathrm{~g}, 5.6 \mathrm{mmol})$ and 3-penten-2-one ( $0.48 \mathrm{~g}, 5.80 \mathrm{mmol}$ ) by a similar method. The major product was isolated by column chromatography using chloro-form-ethanol ( $20: 1$ ) as an eluent ( $0.70 \mathrm{~g}, 51 \%$ ): mp $133{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.22\left(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CCH}_{3}\right), 2.18(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{N}=\mathrm{CCH}_{3}$ ), 2.70 (dd, $1 \mathrm{H}, \mathrm{J}=16$ and $\left.6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 2.83$ (dd, 1 H , $J=16$ and $\left.6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 4.00\left(\right.$ sext, $1 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}$ ), $7.78-8.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$; IR(KBr) $3000,1720,1600 \mathrm{~cm}^{-1} ; \mathrm{MS}$ m/e $243\left(\mathrm{M}^{+}, 0.6\right), 174(1.3), 132(2.7), 104(91.5), 76(100)$, 41(9.0).

1-(2-Butenylidenamino)-1,2-dihydro-3,6-pyridazinedione(3). Compound 3 was prepared from $1(2.00 \mathrm{~g}$, 15.7 mmol ) and crotonaldehyde ( $3.31 \mathrm{~g}, 47.2 \mathrm{mmol}$ ) in 40 ml of acetic acid-ethanol (1:1) by a similar method. The crude product was recrystallized from ethyl acetate $(2.38 \mathrm{~g}, 85 \%)$ : $\mathrm{mp} 177{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 1.96(\mathrm{~d}, 3 \mathrm{H}, J=6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 6.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NC}-\mathrm{CH}=\mathrm{CH}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}$, $=\mathrm{CH}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz},=\mathrm{CH}), 8.58(\mathrm{~m}, 1, \mathrm{~N}=\mathrm{CH})$; $\operatorname{IR}(\mathrm{KBr}) 3000,1660,1600,1000 \mathrm{~cm}^{-1}$.

2-(2-Butenylidenamino)-2,3-dihydro-1,4-phthalazinedione(4). Compound 4 was prepared from 2 ( 2.00 g , 11.5 mmol ) and crotonaldehyde ( $1.59 \mathrm{~g}, 22.5 \mathrm{mmol}$ ) in 40 ml of acetic acid-ethanol (1:1) by a similar method. The crude product was recrystallized from ethyl acetate-ethanol (1.93g, $73 \%$ ): mp $193-195{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$ ) $\delta 2.00$ (d, $\left.3 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 6.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NC}-\mathrm{CH}=\mathrm{CH}), 7.79-8.56(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}) ; \mathrm{IR}(\mathrm{KBr}) 3000,1650,1590$, $980 \mathrm{~cm}^{-1}$.

1-(3-Phenyl-2-propenylidenamino)-1,2-dihyd-ro-3,6-pyridazinedione(5). Compound 5 was prepared from $1(2.00 \mathrm{~g}, 15.7 \mathrm{mmol})$ and cinnamaldehyde $(4.10 \mathrm{~g}, 31.5$ mmol ) in 40 ml of acetic acid-ethanol (1:1) by a similar method (reaction time, 30 min ). The precipitated solid was filtered and recrystallized from ethanol ( $3.42 \mathrm{~g}, 90 \%$ ): mp $236{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}+\mathrm{DMSO}_{\mathrm{d}}$ ) $\delta 7.10-7.67$ (m, $9 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$ and $\left.\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$, 11.40 (br s, 1 H , enolic OH$)$; $\operatorname{IR}(\mathrm{KBr}) 3000,1660,1580,980$ $\mathrm{cm}^{-1}$.

2-(3-Phenyl-2-propenylidenamino)-2,3-dihydro-1,4-phthalazinedione(6). Compound 6 was prepared from $2(2.00 \mathrm{~g}, 11.5 \mathrm{mmol})$ and cinnamaldehyde ( $1.94 \mathrm{~g}, 14.5 \mathrm{mmol}$ ) in $40 \mathrm{~m} /$ of acetic acid-ethanol (1:1) by a similar method (reaction time, 30 min ). The precipitated solid was filtered and recrystallized from ethanol ( $2.84 \mathrm{~g}, 85 \%$ ): mp $228^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right) \delta 7.16-8.60\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 11.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, enolic OH ); $\operatorname{IR}(\mathrm{KBr}) 3000,1650,1590,900 \mathrm{~cm}^{-1}$.

1-(2-Propenylidenamino)-1,2-dihydro-3,6-pyridazinedione(7). Compound 7 was prepared from 1 ( 1.50 g , $11.8 \mathrm{mmol})$ and acrylaldehyde $(1.32 \mathrm{~g}, 23.6 \mathrm{mmol})$ in 30 ml of acetic acid-ethanol (1:1) by a similar method (reaction time, 20 min ). The crude product was recrystallized from chioro-form-methanol ( $1.42 \mathrm{~g}, 73 \%$ ): mp $191^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 5.86\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 6.74(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NC}-\mathrm{CH}=), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz},=\mathrm{CH}), 7.19(\mathrm{~d}, 1 \mathrm{H}, J=10$ $\mathrm{Hz}, \mathrm{CH}=), 8.57(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CH}), 11.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, enolic 0 H ); $\operatorname{IR}(\mathrm{KBr}) 3000,1660,1600 \mathrm{~cm}^{-1}$.

2-(2-Propenylidenamino)-2,3-dihydro-1,4-phthalazinedione(8). Compound 8 was prepared from $2(2.50 \mathrm{~g}$, 14.1 mmol ) and acrylaldehyde $(1.58 \mathrm{~g}, 28.2 \mathrm{mmol})$ in 50 ml of acetic acid-ethanol ( $1: 1$ ) by a similar method (reaction time, 20 min ). The crude product was recrystallized from chlo-roform-methanol $(2.58 \mathrm{~g}, 85 \%): \mathrm{mp} 190^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\right.$ DMSO-d $\left.{ }_{6}\right) \delta 5.75\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 6.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NC}-\mathrm{CH}=)$, $7.67-8.47\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.64(\mathrm{~d}, \mathrm{IH}, J=9 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CH})$; IR(KBr) $3000,1650,1590 \mathrm{~cm}^{-1}$.

3,4,6,9-Tetrahydro-4-methyl-6,9-dioxopyridazino $[1,2-a][1,2,3]$ triazine(13). The compound $3(0.50 \mathrm{~g}$, 2.80 mmol ) was added to 40 ml of acetic acid and the mixture was heated to $70-80^{\circ} \mathrm{C}$ to give a clear solution. The resultant solution was refluxed for 2 hr . After the reaction mixture
was cooled to room temperature, it was evaporated under reduced pressure to give a residue. The residue was suspended in aqueous $10 \% \mathrm{NaHCO}_{3}$ solution and it was extracted with chloroform ( $3 \times 20 \mathrm{ml}$ ). The organic layer was dried over $\mathrm{MgSO}_{4}$ and evaporated under reduced pressure to give a pale green solid product 13 ( $83 \mathrm{mg}, 16 \%$ ): mp $126^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.30\left(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.42$ (ddd, 1 H , $J=19,5$ and $2 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$ ), 2.84(ddd, $1 \mathrm{H}, J=19,7$ and 2 Hz , $\left.\mathrm{C}_{3}-\mathrm{H}\right), 5.48$ (dquint, $1 \mathrm{H}, J=7$ and $2 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}$ ), $6.97(\mathrm{~d}, 1 \mathrm{H}$, $J=10 \mathrm{~Hz}, \mathrm{CH}=), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{CH}=$ ), 7.37 (dd, 1 H , $J=5$ and $\left.2 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right) ; \operatorname{IR}(\mathrm{KBr}) 1700,1660 \mathrm{~cm}^{-1}$; MS m/e $179\left(\mathrm{M}^{+}, 29.3\right), 124(19.8), 96(5.2), 82(57.6), 54(16.2)$.

3,4,6,11-Tetrahydro-4-methyl-6,11-dioxo[1,2,3]-triazino[1,2-b]phthalazine(14). Compound 14 was prepared from $4(0.50 \mathrm{~g}, 2.18 \mathrm{mmol})$ by a similar method; yield: $0.16 \mathrm{~g}(32 \%) ; \mathrm{mp} 193^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{~d}, 3 \mathrm{H}, J=7$ $\mathrm{Hz}, \mathrm{CH}_{9}$ ), 2.43 (ddd, $1 \mathrm{H}, J=19,5$ and $2 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$ ), 2.92 (ddd, $1 \mathrm{H}, J=19,7$ and $2 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$ ), 5.63 (dquint, $1 \mathrm{H}, J=7$ and 2 $\left.\mathrm{Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.38\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5\right.$ and $\left.2 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 7.76-8.56(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$; $\mathrm{IR}(\mathrm{KBr}) 1690,1650 \mathrm{~cm}^{-1} ; \mathrm{MS} m / e 229\left(\mathrm{M}^{+}, 15.0\right)$, 174(71.8), 146(3.3), 132(5.8), 104(75.2), 76(100).

3,4,6,9-Tetrahydro-4-phenyl-6,9-dioxopyridazino[ $1,2-a](1,2,3]$ triazine(15). Compound 15 was prepared from 5 ( $1.0 \mathrm{~g}, 4.14 \mathrm{mmol}$ ) by a similar method (refluxed for 6 hr ). The major product was isolated by column chromatography using ethyl acetate-hexane (3:1) as an eluent ( $0.13 \mathrm{~g}, 13 \%$ ): mp $156^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.79$ (ddd, 1 H , $J=19,5$ and $\left.2 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 3.06$ (ddd, $1 \mathrm{H}, J=19,7$ and 2 Hz , $\left.\mathrm{C}_{3}-\mathrm{H}\right), 6.31\left(\mathrm{dd}, 1 \mathrm{H}, J=7\right.$ and $\left.2 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=10$ $\mathrm{Hz},=\mathrm{CH}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz},=\mathrm{CH}), 7.29\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.43 (dd, $1 \mathrm{H}, J=5$ and $2 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}$ ); $\mathrm{IR}(\mathrm{KBr}) 1700,1660 \mathrm{~cm}^{-1}$; MS $m / e 241\left(\mathrm{M}^{+}, 81.6\right), 186(86.7), 158(11.2), 82(100)$, 54(70.7).

3,4,6,11-Tetrahydro-4-phenyl-6,11-dioxo[1,2,3]triazino $[1,2-b]$ phthalazine(16). Compound 16 was prepared from $6(0.50 \mathrm{~g}, 1.72 \mathrm{mmol})$ by a similar method (refluxed for 6 hr ). The crude product was recrystallized from ethanol ( $0.28 \mathrm{~g}, 55 \%$ ): $\mathrm{mp} 214^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.87$ (ddd, 1 H , $J=19,5$ and $2 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$ ), 3.17 (ddd, $1 \mathrm{H}, J=19,7$ and 2 Hz , $\left.\mathrm{C}_{3}-\mathrm{H}\right), 6.61\left(\mathrm{dd}, 1 \mathrm{H}, J=7\right.$ and $\left.2 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.31\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.54\left(\mathrm{dd}, 1 \mathrm{H}, J=5\right.$ and $\left.2 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 7.74-8.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$; IR(KBr) 1690, $1660 \mathrm{~cm}^{-1}$; MS m/e $291\left(\mathrm{M}^{+}, 26.2\right), 236(70.4)$, 208(1.7), 132(15.0), 104(91.9), 76(100).

Acknowledgement. This research was supported by a grant from Korea Science and Engineering Foundation.

## References

1. (a) R. J. Kobylecki and A. Mckillop, Adv. Heterocycl. Chem., 19, 215 (1976); (b) H. Neunhoeffer, "Comprehensive Heterocyclic Chemistry', Vol. 3, p 369, A. R. Katritzky and C. W. Rees, Ed., Pergamon Press, Oxford, Great Britain, 1984.
2. (a) A. W. Murray and K. Vaughan, $J$. Chem. Soc. Chem. Commun., 1282 (1967); (b) H. Sieper and P. Tavs, Liebigs Ann. Chem., 704, 161 (1967); (c) D. E. Davies, D. L. R. Reeves, and R. C. Storr, J. Chem. Soc. Chem. Commun., 808 (1980); (d) V. A. Chuiguk, G. N. Poshtaruk, and V. A. Goroshko, Ukr. Khim. Zh. 47, 76 (1981) [CA 94, 175002v (1981)]; (e) F. Willey, B. Andereas, and D. Tony, Heterocycles, 20, 1271 (1983); (f) Nippon Soda Co., Ltd., Japan

Kokai Tokkyo Koho JP. 58216190 (1983) [CA 100, 156646 j(1984)].
3. S. C. Shin, H. C. Wang, W. Y. Lee, and Y. Y. Lee, Bull Korean Chem. Soc., 6, 323 (1985).
4. S. C. Shin and Y. Y. Lee, J. Korean Chem. Sac., 27, 382 (1983).
5. S. C. Shin and Y. Y. Lee, Bull. Korean Chem. Soc., 9, 359 (1988).

# Syntheses and Properties of the High-Tc Superconductive $\mathrm{Bi}_{2-x} \mathrm{Mo}_{x} \mathrm{Sr}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{y}$ System 

Keu Hong Kim ", Jong Tae Lim, Seung Koo Cho, Byoung Chan Kwak, Don Kim ${ }^{\boldsymbol{\dagger}}$, and Jae Shi Choi<br>Department of Chemistry, Yonsei University, Seoul 120-749. Received September 11, 1989


#### Abstract

The superconducting properties have been studied for high-Tc superconductors of the $\mathrm{Bi}_{2}-\mathrm{Mo}_{x} \mathrm{Sr}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{y}$ system $(x=$ $0.03-0.30$ ). The crystal structure is pseudo tetragonal with the average lattice parameters $a=5.38 \dot{A}, b=5.44 \dot{A}$ and $c=$ $30.6 \AA$. All samples exhibit superconductivity with $T c$ offset at 79 K and Tc onset at $90-115 \mathrm{~K}$. The Tc onset point decreases with increasing $x$, but the Tc offset points are nearly the same for all samples. Scanning electron micrographs show a special growth behavior of the grains with a plate shape. It is suggested that the decrease in Tc onset points with substitution of Mo for $B i$ is due to the decrease in lattice parameters and to the $p$-orbital of Mo. It is concluded that Mo does not play a crucjal role in the superconducting transition of the $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{y}$ system.


## Introduction

Maeda et al. ${ }^{1}$ were the first to synthesize a superconducting composition of $\mathrm{BiSrCaCu}_{2} \mathrm{O}_{x}$ (1112) which had a Tc of about 105 K , but with a low-temperature tail extending to 80 K . They reported that the composition must contain both Sr and Ca in order to have a high- Tc phase. The $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3}-$ $\mathrm{O}_{y}$ (2223) phase ${ }^{2}$ has been synthesized by D. Kimetal. ${ }^{3}$ and it exhibits superconductivity with Tc onset at 120 K and Tc offset at 79 K . They report that the 2223 composition can easily contain a low-Tc phase depending on thermal treatment conditicn.

Recently, K. H. Kim et al. ${ }^{4}$ have synthesized 1111, 1112 and 1113 compositions and studied their Raman spectra. They have found that the Raman line at $630 \mathrm{~cm}^{-1}$ is the most intense, corresponds to the ( $z z$ ) configuration and is assigned to $\mathrm{Cu}-\mathrm{O}$ stretching vibration along the $c$ axis. However, this strong band at $630 \mathrm{~cm}^{-1}$ is split into at least two components, 629 and $655 \mathrm{~cm}^{-1}$, indicating the presence of distinct $\mathrm{Cu}-\mathrm{O}$ bonds along the $c$ axis, especially for the samples with a lowTc phase.

To study a possible structure ordering effect in the $\mathrm{Bi}-$ $\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ system with a low- Tc phase, high- Tc superconducting materials, $\left(\mathrm{Bi}_{1-1} \mathrm{~Pb}_{3}\right)_{4} \mathrm{Sr}_{3} \mathrm{Ca}_{3} \mathrm{Cu}_{4} \mathrm{O}_{16-s}$ with a variable amount of $\mathrm{Pb}(x=0.1-0.5)$ have been synthesized and studied by electron microprobe analysis, x-ray diffraction, resistivity measurement and micro-Raman spectroscopy ${ }^{5}$. They have found that the optimum effective Pb amount for the best high-Tc superconductivity, with a single phase (high-Tc phase), is around 12 percent. They have also ob-

TPresent address: General Education Department, Pusan National Institute of Technology, Yongdang-dong 100, Nam-gu, Pusan 608-080
served that the intensity of the $655 \mathrm{~cm}^{-1}$ (Cu-O stretching vibration) line decreases with increasing Pb content, and finally disappears at $x=0.5$, where the intensity of the $630 \mathrm{~cm}^{-1}$ line is maximum. Based on the Raman data, they have suggested that the $\mathrm{Cu}-\mathrm{O}$ bond in $\left(\mathrm{Bi}_{1-5} \mathrm{~Pb}_{x}\right)_{4} \mathrm{Sr}_{3} \mathrm{Ca}_{3} \mathrm{Cu}_{4} \mathrm{O}_{16-\delta}$ becomes more homogeneous, a low-Tc phase disappears, and onset Tc increases due to the substitution of Pb for Bi .

In this study, Mo has been substituted for Bi in the superconducting 2223 phase with a variable amount of Mo at a nominal Mo mol percent of $x=0.03-0.30$ to see if Mo eliminates the low-Tc phase, enhances onset Tc and increases homogeneity of the $\mathrm{Cu}-\mathrm{O}$ bond as Pb does in the $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-$ $\mathrm{Cu}-\mathrm{O}$ system.

## Experimental

Sample Preparation and Analysis. A number of compositions in the $\mathrm{Bi}_{2-2} \mathrm{Mo}_{x} \mathrm{Sr}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{y}$ system were prepared from a mixture of $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{MoO}_{3}, \mathrm{SrCO}_{3}, \mathrm{CaCO}_{3}$ and CuO powders (each $99.9 \%$ pure). The starting powder materials were ball mill mixed and calcined at $750^{\circ} \mathrm{C}$ in air for 12 h . The well-mixed powder was pressed into a pellet at a pressure of 49 MPa . The pellet was then heated at $840^{\circ} \mathrm{C}$ in air for three days and quenched to room temperature.

Inductive coupled plasma (ICP) analysis was performed to determine effective Mo mol percent in the sample. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were performed to check the change in defect concentration and phase transition and to determine the calcination and sintering temperatures. X-ray diffraction (XRD) was carried out to detect crystal structure and formation of solid solution, on a diffractometer (Philips 1710, CuKa) equipped with a curved graphite monochrometer in the scattered beam path. Scanning electron microprobe (SEM) analysis was also


[^0]:    ${ }^{\text {tPresent }}$ address: Department of chemistry, Gyeongsang National University, Chinju $660-300$

