Reaction Intermediate of Organic Sulfur Compound II. Nucleophilic Substitution Reaction of Disulfonyl Chloride Compounds

Dae-Dong Sung*, Dae-Il Jung, Kyu-Chul Kim, Yang-Hee Kim, and Soo-Dong Yoh ${ }^{\boldsymbol{\dagger}}$
Department of Chemistry, Dong-A University, Pusan 604-714
${ }^{+}$Department of Chemistry Education, Kyungpook National University. Taegu 702-701. Received July 26, 1989

Abstract

The nucleophilic substitution reactions of naphthalene-1,5-disulfonyl chloride and 4-fluorosulfonylbenzenesulfonyl chloride with p-substituted anilines and methyl substituted pyridines in methanol-acetonitrile mixtures and hydrolyses of those disulfonyl halides have been studied by means of conductometric and polarographic methods. A large difference in the selective parameter, ρ_{N} between mono-sulfonyl chloride and disulfonyl halide can be taken as an evidence that the second $\mathrm{SO}_{2} \mathrm{Cl}$ group of naphthalene-1,5-disulfonyl chloride also takes part in the reaction in contrast to sulfonyl fluoride in 4-fluorosulfonylbenzenesulfonyl chloride, which only acts as a substituent in the nucleophilic substitution reaction.

Introduction

The hydrolysis of sulfonyl chlorides ${ }^{1}$ and the nucleophilic substitution reactions at a sulfonyl sulfur atom 2 have been studied on the basis of the sulfonyl transfer to nucleophiles extensively. Many of these reactions are essentially similar to attack at carbonyl halides ${ }^{3}$, though sulfonyl chlorides are not as active as chlorides of carboxylic acids. Though many papers have been reported, less work has been done on these reactions than on those at an acyl carbon. The mechanism of the reaction of sulfonyl chlorides are not identical; for example, there is a contention that the nucleophilic substitution to occur at tetracoordinate sulfur such as sulfonyl chloride proceeds through the concerted one-step $S_{N}{ }^{2}$ mechanism ${ }^{2}$ or the route of addition-elimination ($S_{A} N$) mechanism via the pentacoordinate intermediate. ${ }^{4}$

It has been found that monosulfonyl chlorides hydrolyze according to the $S_{N} 2$ mechanism, which involves a trigonal pyramidal transition state ${ }^{5}$. These papers have shown that at a constant concentration of the nucleophile, the reaction can be described by the pseudo-first-order rate constants for the solvolytic and nucleophilic substitution reactions of monosulfonyl chlorides.

The solvolytic and nucleophilic substitution reactions of bifunctional sulfonyl halides have been studied by Vizgert ${ }^{6}$ and Sanecki et al ${ }^{7}$ In benzenedisulionyl chlorides hydrolyses studied by a continuous polarographic method, the second step in the consecutive reactions, $-\mathrm{SO}_{2} \mathrm{Cl}$ and $-\mathrm{SO}_{3} \mathrm{H}$ groups influence the reactivity of the second group - $\mathrm{SO}_{2} \mathrm{Cl}^{7}$

Despite more detailed study of bifunctional sulfonyl chloride, there has not been, as far as we are aware, any kinetic observation of disulfonyl chloride of naphthalene ring and a little different bifunctional halides such as, $-\mathrm{SO}_{2} \mathrm{Cl}$ and $-\mathrm{SO}_{2} \mathrm{~F}$ in the benzene ring.

In this paper we have determined the rate constants of the nucleophilic substitution reaction of naphthalene- 1,5 -disulfonyl chloride and 4-fluorosulfonylbenzenesulionyl chloride and discussed possible changes of solvent effect according to a change of nucleophiles.

Experimental

[^0]Material. Naphthalene-1,5-disulfonyl chloride (NDC) was synthesized and purified by classical method. ${ }^{8}$ m.p. $181^{\circ} \mathrm{C}$ (iit., 181-183 ${ }^{\circ} \mathrm{C}$), $\operatorname{IR(KBr)~} \mathrm{cm}^{-1}: 3120,1500,1370$, 1237, 1208, 1180, 1145, 1070, 800, 765, 645, 575, 550, 495; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (TMS, $\mathrm{C}_{6} \mathrm{D}_{\boldsymbol{f}}$): 7.8-8.0 ($\mathrm{s}, 2 \mathrm{H}$), 7.2-7.3 (s, 2H), 6.4$6.6(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{m} / \mathrm{z}$ Calculated for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~S}_{2} \mathrm{O}_{4} \mathrm{Cl}_{2}: 325.18$; Found 323.95 (relative abundance, 6.60) $\mathrm{m} / \mathrm{z} 126\left[\left(\mathrm{M}-\mathrm{S}_{2} \mathrm{O}_{4} \mathrm{Cl}_{2}\right]^{+}\right.$ (100) $\mathrm{m} / \mathrm{z} 225\left[\left(\mathrm{M}-\mathrm{SO}_{2} \mathrm{Cl}\right)\right]^{+}$(56). 4-Fluorosulfonylbenzenesulfonyl chloride (FBC) was purchased from Aldrich and used after identification of the physical constants p-Chloroaniline (p - Cl), p-nitroaniline ($p-\mathrm{NO}_{2}$) and aniline ($p-\mathrm{H}$) were commercial samples, which were used after purification as previously described. ${ }^{9}$ Pyridine (py-H), a-picoline (2 -Mepy), β-picoline (3 -Me-py), and γ-picoline ($4-\mathrm{Me}$-py) were obtained from Tokyo Kasei and used after purification as the method of Ralph, ${ }^{19}$ Kyte, ${ }^{11}$ Coulson ${ }^{12}$ and Krupicka ${ }^{13}$ et al., respectively. Acetic acid (HOAc) and sodium acetate (NaOAc) were obtained from Aldrich as the grade of A.C.S. reagent, Gold Label and were used without further purification. Solvents, methanol (MeOH) and acetonitrile (MeCN) were purified as described in the previous work. ${ }^{14}$

Kinetic Methods. The general kinetic method by means of conductometer has been described previously. ${ }^{14}$ The $k_{\text {obs }}$ values were obtained by the Guggenheim equation. ${ }^{15}$ The polarographic method enables us to observe the instantaneous concentration of the sulfonyl halides.

The rate of hydrolysis in HOAc containing water in the presence of NaOAc was determined by a polarographic method according to Sanecki's. The Polarograms were recorded with a EG \& G Princeton Applied Research (PAR) Model 174A polarograph. A three electrode system using a PAR Model 174 A was employed for all polarogram measurement. The cell was connected to an external reference electrode in the saturated aqueous acetate electrode by a reservoir filled with same solution as that used for dissolving the substrates. The solution of sulfonyl halides in HOAc were degassed and introduced into degassed solution of the other components in the polarographic cell and stirred with a stream of nitrogen gas at $25 \pm 0.05^{\circ} \mathrm{C}$ for 4 seconds.

Then, the polarographic circuit was closed and current intensity as a function of time was recorded. The concentration of substrates were always $3.50 \times 10^{-3} \mathrm{M}$. The rates of hydrolysis by the polarogram were calculated from the Sanecki's equation ${ }^{7}$,

Table 1. The Observed Pseudo-First-Order Rate Constants ($k_{\text {obs }} \times 10^{4} \mathrm{sec}^{-1}$) and the Second-Order Rate Constants ($k_{2} \times 10^{3} \mathrm{~L} . \mathrm{mol}^{-1} . \mathrm{sec}^{-1}$) of the Reaction of 4-Fluorosulfonylbenzenesulfonyl Chloride with p-Substituted Anilines in MeOH-MeCN Binary Solvent Mixtures at $-15^{\circ} \mathrm{C}$

MeOH Content (v/v\%)	Rate Constant	$\begin{gathered} p \sim \mathrm{H} \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \end{gathered}$				$\begin{gathered} p-\mathrm{Cl} \\ {[\mathrm{Nu}] \times 10^{-2} \mathrm{M}} \end{gathered}$				$\begin{gathered} p-\mathrm{NO}_{2} \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \\ \hline \end{gathered}$			
		4.42	6.49	8.47	12.2	4.42	8.47	12.2	13.0	16.6	19.9	23.0	25.8
100	$k_{\text {obs }}$	20.4	27.8	33.6	-	4.00	7.77	10.6	0.279	-	0.391	0.439	-
	k_{2}	$32.6(r=0.998)$				$8.50(r=0.998)$				$0.160(\mathrm{r}=0.999)$			
90	$k_{\text {ctos }}$	20.3	27.7	34.2	-	4.19	7.99	11.7	0.348	0.415	-	0.521	-
	k_{2}	$34.3(r=0.999)$				$9.65(r=0.999)$				$0.172(r=0.999)$			
80	$k_{\text {cbs }}$	19.2	25.1	30.2	43.2	4.10	7.67	11.0	0.333	-	0.444	(0.549
	k_{2}	$30.8(r=0.999)$				$8.87(r=0.999)$				$0.169(r=0.999)$			
70	$k_{\text {dbs }}$	18.4	23.4	-	41.3	3.72	6.74	9.47	0.320	-	0.429)	0.522
	k_{2}	29.8(r $=0.999$)				$7.39(r=0.999)$				$0.158(r=0.999)$			
50	$k_{\text {obs }}$	14.4	-	26.4	36.2	3.02	5.92	8.54	0.287	-	0.374		0.457
	k_{2}	$28.0(r=0.999)$				$7.20(r=0.999)$				$0.153(r=0.999)$			
30	$k_{\text {obs }}$	9.18	14.6	19.9	-	2.37	4.09	5.98	-	\sim	-	-	-
	k_{2}	$26.5(r=0.999)$				$4.63(r-0.999)$							

Table 2. The Observed Pseudo-First-Order Rate Constants ($k_{\text {obs }} \times 10^{4} \mathrm{sec}^{-1}$) and the Second-Order Rate Constants ($k_{2} \times 10^{2} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{sec}^{-1}$) of the Reaction of 4-Fuorosulfonylbenzenesulfonyl Chloride with p-Substituted Pyridines in MeOH-MeCN Binary Solvent Mixtures at $0^{\circ} \mathrm{C}$

MeOH Content (v/v\%)	Rate Constant	$\begin{gathered} \text { Py-H } \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \end{gathered}$			$\begin{gathered} \text { 2-Me-py } \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \end{gathered}$			$\begin{gathered} 3-\mathrm{Me}-\mathrm{py} \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \\ \hline \end{gathered}$			$\begin{gathered} 4-\mathrm{Me}-\mathrm{py} \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \end{gathered}$		
		2.43	4.74	6.94	13.5	19.9	25.8	2.43	4.74	6.94	2.43	4.74	6.94
100	$k_{\text {obs }}$	9.28	17.9	29.9	-	-	-	17.7	41.3	55.7	31.8	63.8	94.3
	k_{2}		4.58			-			8.44			13.8	
90	$k_{\text {abs }}$	15.6	25.0	40.1	1.23	1.95	2.44	28.9	62.0	84.9	18.9	99.3	148
	k_{2}		5.41			0.0985			12.4			22.1	
80	$k_{\text {ats }}$	22.9	37.8	52.2	1.51	2.34	2.81	35.2	85.4	22.9	64.7	144.3	189
	k_{2}		6.50			0.106			17.6			27.8	
70	$k_{\text {abs }}$	26.1	41.8	79.6	2.03	2.83	3.79	61.2	107	162	85.3	182	252
	k_{2}		11.8			0.140			22.4			37.1	
60	$k_{\text {dot }}$	31.1	56.2	92.1	2.56	3.42	4.61	-	-	-	-	-	-
	k_{2}		13.5			0.166			-			-	
50	$k_{\text {obs }}$	41.7	78.1	113	3.12	4.16	5.35	-	-	-	-	-	-
	k_{2}		15.9			0.181			-			-	
40	$k_{\text {cos }}$	54.3	92.6	131	3.58	4.69	5.89	-	-	-	-	-	-
	k_{2}		17.1			0.187			-				
30	$k_{\text {obs }}$	62.9	117	127	4.02	5.16	6.38	-	-	-	-	-	-
	k_{2}		21.0			0.191			-			-	

$$
\begin{equation*}
i_{1} / i_{s o}=\exp \left(-k_{1} t\right)+\frac{\exp \left(-k_{1} t\right)-\exp \left(-k_{2} t\right)}{2\left(k_{2} / k_{1}\right)} \tag{1}
\end{equation*}
$$

where i_{1} was the limiting current measured at a given moment in the sum of limiting current of both forms of disulfonyl chlorides (DS) and monosulfonyl chloride (MS),
$\mathrm{ClO}_{2} \mathrm{~S}-\mathrm{Ar}-\mathrm{SO}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{k_{1}} \mathrm{ClO}_{2} \mathrm{~S}-\mathrm{Ar}-\mathrm{SO}_{3} \mathrm{H}+\mathrm{HCl}$
(DS)
(MS)
$\mathrm{ClO}_{2} \mathrm{~S}-\mathrm{Ar}-\mathrm{SO}_{3} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{k_{2}} \mathrm{HO}_{3} \mathrm{~S}-\mathrm{Ar}-\mathrm{SO}_{3} \mathrm{H}+\mathrm{HCl}$
(MS)
(DA)
and $i_{1,0}$ was the value, which was directly proportional to the initial concentration of DS in Ilkovic's equation ${ }^{16}$.

Results and Discussion

In $\mathrm{MeOH}-\mathrm{MeCN}$ binary solvent, the reactions of NDC and FBC with the nucleophiles (p-substituted anilines and pyridines: Nu) were carried out at the pseudo-first-order condition with respect to the substrate. The pseudo-firstorder rate constants ($k_{\text {ods }}$) were linearly correlated with the concentration of the nucleophiles, eq. (4), to obtain the second-order rate constants, k_{2}.

$$
\begin{equation*}
k_{o s o}=k_{z}[\mathrm{Nu}] \tag{4}
\end{equation*}
$$

Good second order kinetics were observed ($r>0.9997$) in all cases. The observed pseudo-first-order rate constants ($k_{o s s}$) and second-order rate constants are summarized in Tables 1,2 and 3.

Effect of the Subetituent of Nucleophile. The reac-

Table 3. The Observed Pseudo-First-Order Rate Constants ($k_{\text {ds }} \times 10^{4} \mathrm{sec}^{-1}$) and the Second-Order Rate Constants ($k_{2} \times 10^{2} \mathrm{~L} . \mathrm{mol}^{-1} . \mathrm{sec}^{-1}$) of the Reaction of Naphthalene-1,5-disulfonyl Chloride with p-Substituted Anilines in $\mathrm{MeOH}-\mathrm{MeCN}$ at $-15{ }^{\circ} \mathrm{C}$

MeOH Content (v/v\%)	Rate Constant	$\begin{gathered} p-\mathrm{CH}_{3} \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \\ \hline \end{gathered}$			$\begin{gathered} p-\mathrm{H} \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \end{gathered}$			$\begin{gathered} p-\mathrm{Cl} \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \end{gathered}$			$\begin{gathered} p-\mathrm{NO}_{2} \\ {[\mathrm{Nu}] \times 10^{2} \mathrm{M}} \\ \hline \end{gathered}$		
		2.43	4.74	6.94	2.43	4.74	6.94	9.05	13.0	16.6	9.05	13.0	16.6
100	$k_{\text {obs }}$	22.0	40.9	52.9	6.27	6.74	7.19	4.04	5.14	6.15	-	-	-
	k_{2}		6.86			2.02			0.279				
90	$k_{\text {pbs }}$	23.2	43.1	61.8	7.36	7.93	8.48	5.37	7.27	9.02	0.256	0.341	0.418
	k_{2}		8.54			2.48			0.483			0.0214	
80	$k_{\text {abs }}$	24.0	45.3	63.1	7.56	8.22	8.85	6.25	7.69	11.5	0.317	0.416	0.507
	k_{2}		8.64			2.87			0.685			0.0252	
70	$k_{\text {ods }}$	24.5	47.8	64.6	9.63	10.4	11.1	5.12	8.29	11.2	0.402	0.551	0.689
	k_{2}		8.89			3.24			0.805				
60	$k_{\text {abs }}$	24.6	46.6	63.3	8.54	9.27	9.96	6.48	8.22	12.3	0.411		0.612
	k_{2}		8.87			3.15			0.770			0.0266	
50	$k_{\text {ds }}$	22.5	43.4	59.6	7.28	7.81	8.32	4.88	6.18	7.88	-	-	-
	k_{2}		8.22			2.30			0.436			-	

Table 4. Hammett ρ_{N} Values and Brönsted β Values for the Reaction of 4-Fluorosulfonylbenzenesulfonyl Chloride with p-Substituted Anilines and Pyridines in $\mathrm{MeOH}-\mathrm{MeCN}$ Binary Solvent Mixtures at $-15^{\circ} \mathrm{C}$

MeOH Content $(v / v \%)$	ρ_{N}			β	
	Anilines	Pyridines		Anilines	Pyridines
100	-3.30	-2.77		1.11	0.504
90	-3.29	-3.52		1.11	0.643
80	-3.24	-3.59		1.09	0.663
70	-3.25	-2.89		1.09	0.523
50	-3.17	-		1.07	-

$(r>0.995)$

Table 5. Hammett ρ_{N} Values and Brönsted β Values for the Reaction of Naphthalene-1,5-Disulfonyl Chloride with p-Substituted Anilines in $\mathrm{MeOH}-\mathrm{MeCN}$ Binary Solvent Mixtures at $-15^{\circ} \mathrm{C}$

MeOH Content $(\mathrm{v} / \mathrm{v} \%)$	ρ_{N}	β
100	-3.94	1.50
90	-2.71	0.588
80	-2.66	0.581
70	-2.55	0.557
60	-2.66	0.583
50	-3.19	1.37

$(r>0.931)$
tion of FBC and NDC with the series of anilines and pyridines show linear Hammett plots with large negative slopes, $\rho_{N}=-2.55 \sim-3.49$ and good Brönsted relationships with β values of $0.5 \sim 1.5$ in various $\mathrm{MeOH}-\mathrm{MeCN}$ mixtures as shown in Tables 4 and 5 . These values indicate that at the transition state the N atom becomes more positive relative to the ground state and bond formation is more advanced than the bond breaking.

One observed here a large difference in the character of

Table 6. Pseudo-First-Order Rate Constants of Consecutive Hydrolysis (k_{1} and $k_{2} \times 10^{-5} \mathrm{sec}^{-1}$) of Naphthalene-1,5-Disulfonyl Chloride and 4-Florosulfonylbenzenesulfonyl Chloride at $25^{\circ} \mathrm{C}$

Substrate	$k_{1} \times 10^{5}$ $\left(\mathrm{sec}^{-1}\right)$	$k_{2} \times 10^{5}$ $\left(\mathrm{sec}^{-1}\right)$	$Q=k_{2} / k_{1}$
NDC	26.3	3.07	1.17×10^{-1}
FBC	12.4	0.00706	5.69×10^{-4}

these selective parameters between monosulfonyl chloride and disulfonyl halide. The ρ_{N} values of the reaction of monosulfonyl chloride (benzenesulfonyl chloride) with anilines in $\mathrm{MeOH}-\mathrm{MeCN}$ mixtures have been reported as $-2.0 \sim-2.9^{17}$ and these are considerably smaller than the values of -3.2 ~ -3.3 for the reactions of FBC with anilines.

Substitution of sulfonyl fluoride group at the 4-position of benzene seems to act as an electron-withdrawing substituent to the sulfur atom of sulfonyl chloride so that the degree of bond formation is increased substantially compared with that for monosulfonyl chloride. Whether the fluoride atom of the sulfonyl fluoride reacts as a leaving group or a simple substituent is an interesting aspect. It is expected that k_{1} will be quite larger than k_{2}. If the fluoride atom of the sulfonyl fluoride reacts as a leaving group, the hydrolysis will obey the following eq. (5) and eq. (6).

$$
\begin{align*}
& \mathrm{FO}_{7} \mathrm{~S}-\mathrm{Ar}-\mathrm{SO}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\rightarrow]{k_{1}} \mathrm{FO}_{2} \mathrm{~S}-\mathrm{Ar}-\mathrm{SO}_{3} \mathrm{H}+\mathrm{HCl} \tag{5}\\
& \mathrm{FO}_{2} \mathrm{~S}-\mathrm{Ar}-\mathrm{SO}_{3} \mathrm{H}+\mathrm{H}_{8} \mathrm{O} \xrightarrow{k_{2}} \mathrm{HO}_{3} \mathrm{~S}-\mathrm{Ar}-\mathrm{SO}_{3} \mathrm{H}+\mathrm{HF} \tag{6}
\end{align*}
$$

The data of consecutive hydrolysis from the polarographic method have been shown in Table 6 together with the rate constant ratio $Q=k_{2} / k_{1}$, which indicates that the reactivity of the second $-\mathrm{SO}_{2} \mathrm{~F}$ group, after the more reactive Cl^{-} has left SO_{2} group as a substituent, is very small and has a negligibly small leaving group ability.

On the other hand, the values of rate constant ratio, Q in the hydrolyses of benzenedisulfonyl chlorides, are as large $(0.28 \sim 1.00)$ as shown in Sanecki's result ${ }^{\beta}$ with the exception
of 2,4,6-trimethyl-1,3-benzenedisulfonyl chloride and 1,4benzenedisulfonyl chioride.

For the hydrolysis of NDC in the same condition, the Q value is three orders of magnitude higher than the corresponding values of Q for FBC and has quite different k_{2} values $\left(k_{2 \mathrm{NDC}} / k_{2(\mathrm{FBC})}=435\right)$. This constitutes good evidence that two leaving groups of NDC partake in the reaction in contrast to sulfonyl fluoride of FBC which acts as a monosulfonyl chloride with $\mathrm{SO}_{2} \mathrm{~F}$ as a substituents.

Effect of Solvent. The second-order rate constants in Table 1 show a maximum rate behavior at the composition of $90(\mathrm{v} / \mathrm{v}) \% \mathrm{MeOH}$. This result reflects that an anomaly is due to the physico-chemical properties of $\mathrm{MeOH}-\mathrm{MeCN}$ mix"tures. $\mathrm{MeOH}-\mathrm{MeCN}$ mixture is well known as an isodielectric solvent mixture and appeared the physico-chemical anomalies at the composition of $80-90(\mathrm{v} / \mathrm{v}) \%$, which are often associated with the broken down polymer chain structure of MeOH^{18}. Table 1, shows a maximum rate phenomenon at 90 (v/v)\% MeOH content in MeOH-MeCN mixtures as a trend of general physico-chemical anomalies which have been reported previously. ${ }^{19}$

In spite of this trend of anomalies for $\mathrm{MeOH}-\mathrm{MeCN}$, the plots of $\log k_{2}$ vs. methanol content for the reaction of FBC with substituted pyridines show that the logarithms of second-order rate constants increase with MeCN content of solvent mixture gradually as shown Table 2 . This may be due to lower $p \mathrm{~K}_{b}$ values of pyridines than those of anilines and the differences in $p \mathrm{~K}_{b}$'s counterbalances ${ }^{20}$ the property of anomalies for $\mathrm{MeOH}-\mathrm{MeCN}$ mixtures. Pyridine and me-thyl-substituted pyridines have $p \mathrm{~K}_{b}$ values in the range 7.87$8.80^{21}$, while aniline and p-substituted anilines have $p \mathrm{~K}_{b}$ values in the range $8.88-12.10 .^{22}$ In case of p-substituted anilines, electron withdrawing substituents in the ring decrease the basicity, especially in case of $-\mathrm{NO}_{2}$ substituent ${ }^{23}$.

A wide range variation of basicity in p-substituted anilines would be affected by the same tendency of the variation of the solvent mixtures basicity ${ }^{24}$ in the nucleophilic substitution reaction of FBC and NDC with p-substituted anilines in $\mathrm{MeOH}-\mathrm{MeCN}$ binary solvent mixtures. While the nucleophilic substitution reaction of FBC with substituted pyridines could not be influenced by the basicity of solvent mixtures because the higher basicities of pyridines compensate the anomalies of solvent by basicities of solvent mixtures and MeCN accelerates desolvation effect with substituted pyridines in the rate determining step.

The shift of the maximum rate toward $70(\mathrm{v} / \mathrm{v}) \%$ is shown in Table 3 for the reaction of NDC with p-substituted anilines in $\mathrm{MeOH}-\mathrm{MeCN}$. This estimates that only one leaving group in FBC react mainly, in contrast with, two groups in NDC separating from the reaction center competitively, and then the transition state of NDC is stabilized at a bit of higher region of MeCN content which is caused by the effect of ascending the polarity of solvent comparing with the transition state of FBC. This trend is in accord with the Q values of NDC in Table 6 and it can shift the region of maximum rate lower to $70(v / v) \%$.

We conclude that the reactions of disulfonyl halides with various nucleophilies have proceeded with different solvent effects according to the $p \mathrm{~K}_{b}$'s of nucleophiles.

Acknowledgement. We thank the Ministry of Education for financial support as the Basic Science Research Institute program and professor Jae-Duck Lee of Department of

Chemistry, Dong-A University for carring out the polarogram measurements. This paper is presented for commemoration of Dr. Ikchoon Lee's 60 th birthday anniversary.

References

1. B. L. Archer and R. F. Hudson, J. Chem. Soc., 3259 (1950); G. Geuskens, Helv. Chim. Acta., 42, 522 (1959); D. A. Brown and R. F. Hudson, J. Chem. Soc., 3352 (1953); J. B. Hyne and R. E. Robertson, Can. J. Chem., 34, 931 (1956); A. Arcoria, et al., Tetrahedron, 33, 105 (1977).
2. For a review of mechanism of nucleophilic substitutions at di^{-}, tr^{-}, and tetracoordinate sulfur atoms, see Guffarin and Fava, Prog. Phys. Org. Chem., 6, 81-109 (1968); Z: G. Linetskaya and N. V. Sapoznikova, J. Appl. Chem. USSR, Engl Trans., 21, 876 (1948); H. K. Hall, Jr., J. Am. Chem. Soc., 78, 1450 (1956); E. F. Jenkins and A. N. Hambly, Aust. J. Chem., 14, 190 (1961); E. F. Jenkins and A. N. Hambly, Aust. J. Chem., 14, 205 (1961); R. V. Vizgert, Usp. Kim., 32, 3 (1963).
3. J. March, "Advanced Organic Chemistry", 3rd Ed., John Wiley \& Sons, New York, 442 (1985).
4. Sabol and Anderson, J. Am. Chem. Soc., 91, 3603 (1969); Williams, Nudelman, Booms, and Cram, J. Am. Chem. Soc., 94, 4684 (1972); R. V. Vizgert and I. M. Tuchapski, Russ. Chem. Rev., 32, 1-20 (1963); G. Berger and S. C. J. Oliver, Rec. Trav. Chim., 46, 515 (1927): I. Hedlund, Arkiv. Khemi. Miner. Geol., 14A, 1 (1940); E. Tommila and P. Hirsjarvi, Acta. Chem. Scand., 5, 659 (1951); M. L. Tonnet and A. N. Hambly, Austral. J. Chem. Soc., 24, 703 (1971); E. Ciuffarin, L. Senatore and M. Isola, J. Chem. Soc., Perkin II, 468 (1972); L. J.Stangel, L. Senatore and E. Ciuffarin, J. Chem. Soc., Perkin II, 852 (1972).
5. R. E. Robertson, B. Rossali, and S. E. Sugamori, Can. J. Chem. 47, 4199 (1969); R. E. Robertson and B. Rossali, Can. J. Chem., 49, 1441 (1971).
6. R. V. Vizgert, I. E. Kachanko, and V. E. Yavorovskaya, Reakts. Sposobn. Org. Soedin, 3, 16 (1966).
7. P. Sanecki and E. Rokaszewski, Can. J. Chem., 65, 2263 (1987).
8. Shriner and Shriner, "Organic Syntheses", Coll. Vol., 4, 693 (1963).
9. I. Lee, D. D. Sung and S. B. Han, Bull. Korean Chem. Soc., 6, 3162 (1985).
10. E. D. Ralph and W. A. Gilkerson, J. Am. Chem. Soc., 86, 4783 (1964).
11. C. T. Kyte and G. H. Jeffery, J. Chem. Soc., 4454 (1960).
12. E. A. Coulson and J. B. Ditcham, J. Appl. Chem, (London) 2, 236 (1952).
13. J. Krupicka and Prom. Krystalizace, Sb., Prednasek Se$\min , 90 ;$ C. A. (1971).
14. I. Lee, H. W. Lee, T. S. Uhm, D. D. Sung and Z. H. Ryu, J. Korean Chem. Soc., 32, 85 (1988).
15. E. A. Guggenheim, Phil. Mag., 2, 538 (1928).
16. A. J. Bard and L. R. Faulker, "Electrochemical Methods", John Wiley \& Sons, New York, p. 148 (1980).
17. I. Lee and I. S. Koo, Tetrahedron, 39, 1803 (1983).
18. I. Lee and I. S. Koo, J. Korean Chem. Soc., 25, 7 (1981); I. Lee and I. S. Koo, Bull. Korean Chem. Soc., 2, 41 (1981); O. Rogne, J. Chem. Soc., (B), 1294 (1968).
19. M. A. Coplan and R. M. Fluoss, J. Phys. Chem., 68, 1181 (1964); A. D. Aprano, M. Gofferdi and R. Triolo, f. Chem Soc. Faraday I, 72, 79 (1976); R. Criegee, Chem. Eng. News., Mar. 22 (1965).
20. L. R. Dawson, in 'Chemistry in Non-Aqueous Solvents", Vol. 4, Interscience, New York (1863); D'Alelio, G. F. and E. E. Reid, J. Am. Chem. Soc., 59, 111 (1937); V. Gold, in "Advances in Physical Organic Chemistry", Vol. 5, 305, Academic Press, London (1967).
21. Basicity values were listed in: S. Coffey, "Rodd's Chemistry of Carbon Compounds", 2nd, Ed., Vol. IV, 158 (1976) and aqueous pK_{a} 's tabulated in: Z. Rappoport, Ed., "Handbook of Tables for Organic Compound Identification", 3rd., ed., CRC: Baca Raton, FL, 436, Ams-
terdam (1974). Pyridine ($p \mathrm{~K}_{b}=8.80$), a - picoline ($p \mathrm{~K}_{b}=$ 8.03), β-picoline ($p \mathrm{~K}_{b}=8.40$), γ-picoline ($p \mathrm{~K}_{b}=7.87$).
22. M. A. Paul and F. A. Long, Chem. Revs., 57, 1 (1957); S. D. Barton, F. R. S. and W. D. Ollis, F. R. S., "Comprehensive Organic Chemistry", Vol. 2, Pergamon, Oxfort, 151 (1979). Aniline ($p \mathrm{~K}_{b}=9.42$), p-Chloroaniline $\left(p \mathrm{~K}_{b}=\right.$ 10.54), p-nitroaniline ($p \mathrm{~K}_{b}=12.10$), p-toluidine ($p \mathrm{~K}_{b}=$ 8.88).
23. S. Coffey, "Rodd's Chemistry of Carbon Compounds", Vol. III. B, Elsevier, Amsterdam, 220 (1974).
24. Klamann and Fabienke, Chem. Ber., 93, 252 (1960): Litvinenko, Shatskaya and Savelova, Doklad. Chem., 265, 199 (1982); Opitz, Angew. Chem. Int. Ed. Engl., 6, 107 (1967).

[^0]: *The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, 1988.

