
(10)

Figure 3.
Thermal isomerization from trans $-(3)$ to cis $-(3)$ has been reported to occur at 200 to $300^{\circ} \mathrm{C} .{ }^{4}$ However, the corresponding isomerization of 9 did not occur at $160^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$ at which temperature 9 sublimed.

When a large excess amount of hydrogen peroxide was used ($6,3.038 \mathrm{mmol}, \mathrm{H}_{2} \mathrm{O}_{2}, 5 \mathrm{ml}, 4 \mathrm{~h}$), 1 methylthianthrene 5 , $5,10,10$ tetroxide (10); mp $297-298^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 100 \mathrm{MHz}$) $\delta 2.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 7.82-7.97$ ($\mathrm{m}, 4 \mathrm{H}, 2,3,7,8$ positions of Ar), 8.05-8.42 (m, 3H, 4, 6,9
positions of Ar); IR (KBr) 1450, 1320-1150 (br) cm^{-1}; UV $\lambda_{\text {max }}^{\mathrm{CH}_{3} \mathrm{OH}} 294(\varepsilon, 8,200), 284(9,200) \mathrm{nm} ; \mathrm{MS} m / e 294\left(\mathrm{M}^{+}\right)$. was obtained in 56% yield. It was unsuccessful to detect either sulfone or trioxide of 6 .

Acknowledgement. This work was supported by a grant from Dae Woo Foundation.

References

1. T. Akasaka, M. Kako, H. Sonobe, and W. Ando, J. Am. Chem. Soc., 110, 494 (1988).
2. K. Kim, and J. S. Hwang, Korean Chem. Soc., 27, 76 (1983).
3. M. Janczewski and M. Dec, Bull. Acad. Polon. Sci. Ser. Sci. Chim., 10, 605 (1962).
4. K. Mislow, P. Schneider, A. L. Temay, Jr., J. Am. Chem. Soc., 86, 2957 (1964).
5. A. L. Ternay, Jr., J. Herrmann, M. Harris, and B. R. Hayes, J. Org. Chem., 42, 2010 (1977).

Enantioselective Synthesis of Cryptostyline I, II and III via Asymmetric Reduction

Byung Tae Cho* and Cheol Kyu Han
Department of Chemistry, Hallym University, Chuncheon 200-702. Received November 6, 1989

Since the first naturally occurring 1 -substituted phen-yl-2-methyl-1,2,3,4, tetrahydroisoquinoline alkaloids, cryptostyline I, II and III, ($4 \mathrm{a}, \mathbf{4 b}$ and 4 c , respectively) were isolated from orchidaceae, much efforts for the structural elucidation of 4 have been devoted. ${ }^{1,2}$ However, no attempts of enantioselective synthesis of 4 have not been made. ${ }^{3}$

Recently a wide variety of high promising chiral reducing agents achieving excellent optical induction for prochiral ketones have been developed. ${ }^{4}$ Among them, it was realized that chiral boron and aluminum hydrides, such as K glucoride ${ }^{5} 5$, Itsuno's reagent ${ }^{6} 6$ and Mosher's reagent ${ }^{7} 7$ provide high optical inductions for asymmetric reduction of imine derivatives. ${ }^{6,8}$ The compound 4 could be obtained by reduction of the corresponding iminium salts $3^{16,9}$ Therefore, it appeared desirable to undertake the study of enantioselective

a: $R_{1}=H_{1} R_{2}+R_{3}=-O C H_{2} O+\quad D: R_{1}=H_{0} R_{2}=R_{3}=O M e \quad c: R_{1}=R_{2}=R_{3}=O M e$
Scheme 1
synthesis of $\mathbf{4}$ by asymmetric reduction 3 using these hydrides. This paper describes the results. The requisite iminium salts 3 could be readily prepared by Bischler-Napieralski cyclization of amides 1 with phosphorus oxychloride ${ }^{10}$, followed by quaternization with methyl iodide. (Scheme 1). The reaction conditons for reductions were initially chosen to mimic those found most successful for reduction of ketones with the reagents. Thus, the reaction with K glucoride 5 was carried out in THF at $-78^{\circ} \mathrm{C}$. The reduction proceeded to completion within 6 h , giving cryptostylines 4 in the range of $80-86 \%$ yield. The asymmetric inductions afforded 37% ee for $3 \mathrm{a}, 43 \% e e$ for 3 c and $25.2 \% e e$ for $3 \mathbf{c}$. Both $\mathbf{4 a}$ and $\mathbf{4 b}$ obtained are enriched with the S enantiomers, which are produced by re face attack of hyride. However, the opposite R enantiomer is given for 4c. Itsuno's reagent 6 provides somewhat low optical inductions ($13-21.1 \% e e$) enriched with the opposite configurations in comparison to those produced by 5 . Mosher's reagent 7 gave

Table 1. Asymmetric Reduction of Iminium Salts 3 with Chiral Reducing Agents

Chiral Compound reducing agent		Reaction Condition ${ }^{a}$	Products $4{ }^{\text {c }}$			
		Yield ${ }^{\text {b }}$	$\begin{gathered} {[a]_{b}^{23}} \\ \text { obsd., deg. }{ }^{d} \% e e x \end{gathered}$	Abs. config. ${ }^{2}$		
3 a	5		$-78^{\circ} \mathrm{C}$, 6 h	84	20.64(c 2.75) $37.0{ }^{e}$	S
	6	$30^{\circ} \mathrm{C}, 15 \mathrm{~h}$	81	-9.22(c 2.82) $17.0{ }^{\text {e }}$	R	
	7	$0^{\circ} \mathrm{C}, 20 \mathrm{~h}$	71	3.50(c 2.83) $6.3{ }^{\text {e }}$	S	
3b	5	$-78^{\circ} \mathrm{C}$, 3h	80	25.67(c 0.26) 43.0'	S	
	6	$30^{\circ} \mathrm{C}$, 15 h	71	-7.57(c 0.32) 13.0 f	R	
	7	$0^{\circ} \mathrm{C}$, 18 h	74	-9.38(c 0.32) 16.0	R	
3 c	5	$-78^{\circ} \mathrm{C}$, 3h	86	-19.62(c 0.18)25.2s	R	
	6	$30^{\circ} \mathrm{C}$, 15h	79	16.44(c, 0.16) $21.1{ }^{\text {g }}$	S	
	7	$0^{\circ} \mathrm{C}, 18 \mathrm{~h}$	69	8.75 (C 0.16$) 11.2^{\mathrm{g}}$	S	

${ }^{a}$ Solvent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-THF(1:1) for both 35 and $6 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(1: 1)$ for 7 . ${ }^{\text {b }}$ Isolated products, purified by chromatography. ${ }^{\text {c Spectral date in }}$ N.M.R., I.R. and U.V. for all products were identical with reported values. ${ }^{1 b d}$ In chloroform. ${ }^{6}$ Based on $[a] D^{20} 56$ ($\left.c 2.7, \mathrm{CHCl}_{3}\right)$; ref. $2 c$. /Base on [$\alpha]_{b} 59\left(\mathrm{CHCL}_{3}\right)$; ref $2 c .8$ Based on [$\left.\alpha\right]_{b} 78.0\left(\mathrm{CHCl}_{3}\right)$; ref. 2c.
very low optical inductions. ($6.3-16 \% \mathrm{ee}$). The results are summarized in Table 1. The following procedure is representive. Acylation of commercially available homoveratrylamine with 3,4-dimethoxyphenylacetylchloride afforded amide 1b (87%), [m.p. $111-112^{\circ} \mathrm{C}$ (it. ${ }^{16} 113-114^{\circ} \mathrm{C}$)], which was then cyclized with POCl_{3} in toluene at $110^{\circ} \mathrm{C}$ to cyclic imine 2 b (85%), [m.p. $166-168^{\circ} \mathrm{C}$ (lit, ${ }^{2 c} 171^{\circ} \mathrm{C}$)]. Conversion of 2 b to iminium salt 3b was achieved by treatment of excess methyl iodide in acetone. (98\%), [m.p. $210-212^{\circ} \mathrm{C}$ (lit. ${ }^{16} 211-213^{\circ} \mathrm{C}$]. The solution of $3 \mathrm{~b}(3 \mathrm{mmol})$ in 9 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ precooled to $-78^{\circ} \mathrm{C}$ was added to the solution of $5(3.3 \mathrm{mmol})$ in 9 ml of THF at $-78^{\circ} \mathrm{C}$ via a double -ended needle. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$. After 3 h , unreacted hydride was quenched by injection anhydrous HCl in $\mathrm{Et}_{2} \mathrm{O}$ precooled to $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and treated with 3 ml of 6 N HCl for 1 h at $25^{\circ} \mathrm{C}$. After evaporation of the volatiles under reduced pressure, the mixture was filtered. The filter cake was dessolved in water. The water layer separated was made alkaline with $c-\mathrm{NH}_{4} \mathrm{OH}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The extract was dried over anhyrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated to obtain crude $\mathbf{4 b}$. Column chromatography on silica gel using AcOEt $-\mathrm{Et}_{3} \mathrm{~N}$ (9:1), followed by recrystrallization from $\mathrm{Et}_{2} \mathrm{O}$ afforded 4b. (yield. 80%), [m.p. $115-117{ }^{\circ} \mathrm{C}$ (lit. ${ }^{16}$ $\left.117-118{ }^{\circ} \mathrm{C}\right)$] $\left[a b_{b}^{23} 25.67\left(\mathrm{c} 0.26, \mathrm{CHCl}_{3}\right.\right.$), which represents $43 \% e e, R$, based on $\left[a_{b} 59.0\left(\mathrm{CHCl}_{3}\right){ }^{2 c}{ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.33-3.24\left(\mathrm{~m}, 4 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{2}\right)-$), $3.60(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{N}), 6.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $6.78-6.83(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$.

This study provides the first example for enantioselective
synthesis of 1 -phenyl-2-methyl-1,2,3,4, -tetrahydroisoquinoline alkaloids. Further investigation for enantioselec. tive synthesis of the other chiral tetrahydroisoquinoline alkaloids via asymmetric reduction are currently under way.

Acknowledgement This work was supported by the Korea Research Foundation. We thank Mr. T. H. Yoo and Mr. H. W. Lee, Analytical Department, Yuhan Cooporation, Korea, for polarimeter measurement.

References

1. (a) K. Leander and B. Lüning, Tetrahedron Lett., 1393 (1968); (b) K. Leander and B. Luning and E. Ruusa, Acta. Chem. Scand., 23, 244 (1969). (d) ref. 2g.
2. (a) J. F. Blount, V. Toome, S. Teitel and A. Brossi, Tetrahedron, 29, 31 (1973); (b) K. Leander, B. Lüning and L. Westin, Acta Chem. Scand, 27, 710 (1973); (c) A. Brossi and S. Teitel, Helv. Chim. Acta., 54, 1564 (1972); (d) L. Westin, Acta Chem. Scand., 26, 10 (1972); (e) T. Kametani, H. Sugi and S. Shibuya, Tetrahedron, 27, 2409 (1971); (f) T. Kametani, S. Shibuya, H. Sugi and K. Fukumoto, J. Heterocycl. Chem., 10, 451 (1973); (g) S. Agurell, I. Granelli, K. Leander, B. Lïning and J. Rosenblom, Acta Chem. Scand. Ser, B, 28, 239 (1974).
3. Few examples for the preparation of 4 by reductive N -methylation of norcryptostylines obtained by optical resolution have been reported: see ref. $2 \mathrm{a}, 2 \mathrm{c}, 2 \mathrm{e}$ and 2 f .
4. For a review of recent work, see: (a) M. M. Midland, "Asymmetric Synthesis', J. D. Morrison, Ed.: Academic Press: New York, 1983; Vol. 2, Chapter 2; (b) E. R. Grandbois, S. I. Howard and J. D. Morrison, ibid., Chapter 3; (c) H. Haubenstock, Top. Stereochem., 14, 231 (1983); (d) J. W. Apsimon and T. Lee Collier, Tetrahedron, 42, 5157 (1986); For a comparative work, see: H. C. Brown, W. S. Park, B.T. Cho and P. V. Ramachandran, J. Org. Chem., 52, 5406 (1987).
5. Potassium 9-O-(1,2; 5,6-di-O-isopropylidene- α-D-glu-cofuranosyl)-9-boratabicyclo[3.3.1 monane: H. C. Brown, B. T. Cho, and W. S. Park, J. Org. Chem., 53, 1231 (1988).
6. $\mathrm{BH}_{3}-\mathrm{AMDPB}(2: 1), \mathrm{AMPDB}=(\mathrm{S})-(-)-2$-amino- $1,1-\mathrm{di}-$ phenylbutan -1 -ol: S. Itsuno, M. Nakano, K. Miyazaki, H. Matsuda, K. Ito, A. Hirao and S. Nakahama, J. Chem. Soc. Perkin Trans., 1, 2039 (1985).
7. LiAlH_{4}-Darvon alcohol(1:1), Darvon alcohol $=[2 \mathrm{~S}$, 3R]-(+)-4-(dimethylamino)-3-methyl-1,2-diphen-yl-2 butanol: S. Yamaguchi and H. S. Mosher, J. Org. Chem., 38, 1870 (1973).
8. R. O. Hutchins, A. Abdel-Magid, Y. P. Stercho and A. Wambsgans, J. Org. Chem, 52, 704 (1987).
9. (a) R. P. Polniaszek and J. A. Mckee, Tetrahedron Lett, 28, 4511 (1987); (b) R. P. Polniaszek and C. R. Kaufman, J. Am. Chem. Soc., 111, 4859 (1989).
10. W. M. Whaley and T. R. Govindachari, Org. Reactions, 6, 74 (1951).
