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A Lattice Statistical Thermodynamic Study of
Bilayer Amphiphile Molecules
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In order to elucidate conformational properties of bilayer semiflexible amphiphile molecules, we derive a expression of free
energy separation with respect to bilayer width, and segment density profiles on the basis of cubic lattice model. Qur result
shows that at the moderate surface coverage region (i.e., 9 <0.35), bilayer system tends to have thermodynamically favorable
bilayer width corresponding to free energy minimum condition resulting from the major contribution of attractive interaction
between chain segments. However such a favorable bilayer width do not occur in the region of high surface converage (i.e.,
0>>0.4) where repulsive interaction between chain segments is considered to be dominant.

Introduction

In agueous environment, bilayer can be formed by amphi-
phite chain molecules due to their hydrophobic and hydro-
philic natures. It plays an important role in biological sys-

tems such as membranes and vesicles. Because of the flex-
ibility of hydrocarbon chain of the amphiphiles, the amphi-
philes can have various conformational states, which result
in fluidity of inner layer region. Recently. by making use of
Self-Consistent Field theory based on Iolan and Ldwards’
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path integral formulation of polvmer!, Muthukumar and
Jyh-Shyong Ho? studied the conformational properties such
as segment density profiles and free energy change of ter-
minally attached polymer chains between parallel plates.
However they did not consider the effect of chain stiffness of
chain motecules. In order to incorporate chain stiffness ef-
fect. we make use of well known lattice model which is very
convenient in treating short chain amphiphile molecules at
high concentration. Recently, Wang and Rice®, using Scheut-
jens and Fleer approach,®™® have developed a theory of
monolayer amphiphile chain molecules. Since they introduce
the reasonable energy parameters which are suitable to
describe the monolayer amphiphile chain molecules in li¢uid
surface, we apply their model to our bilayer problem. Using
our lattice theory, we attempt to account for favorable
bilayer width and segment density profiles of bilayer am-
phiphile molecules having chain stiffness. With the concept
of statistical weights in conformational statistics’, we can
derive Fleer and Scheutjens type-nonlinear equations’ of
segment density profiles which make it possible to calculate
free energy of amphiphile molecules. These nonlinear equa-
tions can be solved by numerical method.

Theory

Model. We consider 3—-dimensional simple cubic lattice
consisting of {) paralled layers numbered &= 1.../J of sites.
where layers #=1 and 4 = { represent two intertaces where
the head groups of chain molecules are to e attached.
Therefore we can regard {) as the layer width of our model
system. ach layer contains /. lattice sites. We consider 2N
amphiphile molecules each consisting of r segments are
distributed over the lattice such that a segment of the am-
phiphile occupies only one lattice site. ‘T'o each interface, we
assume that N hydrophilic head groups of the amphiphiles
are always anchored respectively. Following Rice Model®,
we take the interaction energy parameter as

: head-head nearest neighbor interaction energy
: head-tail nearest neighbor interaction energy

: tail-tail nearest neighbor interaction energy

e 1 tail-surface contact energy.

Bond Pair Statistical Weight. In order to incorporate
chain stiffness effect in amphiphile chain molecules, we need
to know exact bond pair forms composed of consecutive
three segment of the chain molecule. Since a bond in the
cubic lattice can occupy the two adjacent lattic sites by the
way of three possible orientations; forward(F), lateral{l.), and
downward(1)) directions, all the possible adjacent bond pairs
have following 9 configurations:

F.F) LF OF

F.L) @CLy OL

FD LD OD
In the cubic lattice, there ¢an be only two relative orienta-
tions of the adjacent bond pair. straight and bent at 90°.
Following the vonentional method® '’ used to incorporate the

chain stiffness of the linear chain molecule in the lattice
system, we now assume that straight and bent pairs
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correspoed to frans and gauche states of real hydrocarbon
chain respectively. Defining the bent energy with respect to
straight pair as ¢,, we can write the statistical weights of a
bent and a straight pairs as exp{~£/k,7) and ] respectively.
where /, is the Boltzmann constant and 7 is the absolute
temperature. Let 7 be lattice coordination number {in cubic
lattice. 7 =6). In spirit of Dill and Cantor’s Method."'? incor-
porating the statistical weights of straight and bent pairs, we
now determine the statistical bond pair weights assigned to
the above ¥ bond pairs as follows:

{1} (F. F): The bond is forward (from layer £ — 1 to &} and
its preceding bond is also forward (from layer -1 to £ - 1).
‘This type of bond pair has only one straight pair. Therefore
the bond pair weight DWA(F. F)is L.

(2)(L.. F): The bond is forward (from layer 4 - to &) and its
preceding bond is lateral (from tayer #—1to % — [). This type
of bond pair has only on bent pair. Therefore the bond pair
weight HW(L, F) is expl-¢ /&, ).

(3) (). F). The bond is forward {(from layer £ -1 to &) and
its preceding bond is downward {from layer £ to & - ). This
type of bond pair is self-reversal. In order to exclude this un-
realistic bond pair. we have to take the bond pair weight
HOWD, F) to be zero.

(4) (F, L): 'T'he bond is lateral (from layer 4 to ») and its
preceding bond is forward (from leyr -1 to #). In this case,
there are (% - 2) possible bent pairs, which give the bond pair
weight DWAF, L)=(Z-2)exp(-¢ /2, 1).

(5) (L., L): The bond is lateral (from layer £ to £) and its
preceding bond is also lateral {from layer / to £). ‘I'his type of
bond pair can have (Z-4) bent pairs and 1 straight pair.
Therefore the bond pair weight WAL, L) is 1+(Z-dexp
(- eJk, 1.

{6) (D), L): The bond is lateral (from layer 4 to &) and its
preceding bond is downward (from layer £+ 1 to #). This
bond pair can have (Z-2) bent pairs. Therefore the bond pair
weight DWAD, L} is (Z-2exp(- £ /8, T).

{7} (F, D): The bond is downward {from layer A+ 1 to &)
and its preceding bond is forward (from layer 4+ to £+ 1). This
bond pair is self-reversal. In order to exclude the unrealistic
bond pair. we take the bond pair weight 2 WTF, D) to be zero.

(8) (1., D}: The bond is downward {from leyer £+ 1 to £)
and its preceding bond is lateral (from layer 4+ | to &+ 1).
This bond pair includes only one bent pair. Theretore the
bond pair weight DWAL, D} is expl- ¢ /0, 1.

(9 {1, D): The bond is downward (from layer £+ 1 to £)
and its preceding bond is also downward {from layer # + 2 to
%+ 1). This bond pair has only one straight bond pair. There-
fore the bond pair weight WD, D) is 1.

Above nine bond pair weighting factors incorporating
chain stiffness can be summarized as follows:

1)(F,F): DW(F, F)=1

(L, F): DW(L,F)=exp(—ee/ o T)

3O, F) : DW(D, F)=0(.e., eliminating back folding)
4)(F.L): DWE, L)=(Z-2)exp(—e./RT) F

8) (L.L) : DWL, L)=1+Z—4) exp{—¢4/4: T)

6)(D, L) : DWD,L)=(Z—2) exp(—e ¢ /b T)

7)(F, D) : DW(F,D)=0 (i.e., eliminating back folding)
8 (L, D) : DW(L, D)=exp(—c¢/ T)
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9 (D, D): DW(D.D)=1.

Conformational n Step Weight. Since amphiphile
chain molecule has chain flexibility nature, it can occupy the
lactice with various conformational states. In order to treat
numerous conformations of the chain molecules on the basis
of chain statistics, we thus assume that the conlormational
states of the chain molecule with » segments can be generat-
ed by successive additions of consecutive r segments. At
each addition step. we assign a conformational weight to the
position to be generated with specific adjacent bond orienta-
tion. When describing the chain conformations by use of
chain statistics. we have to include formally encrgetic and
entropic contributions to the chaii, conformations. In order to
incorporate those effects, we adopt and extend the method
due to levine «f al.” Let Pl#.n) be the conformational weight
that the first segment (for # = 1) occupies as site in layer &,
and then let (L. n:t', » - 1) be the conformational weight that
the nth segment (for 2 < n <#), enters a site in layer # by
forward (#'=%- 1), lateral (#'=1%), or downward (¥'=# + 1)
direction. Extending Whittington’s recurrence cquation? by
introducing the bond pair weights from L. (1) to include
chain stiffness, we can write Ak, 78" n-1) as

(). for n=2:
Pl n k=1, n—1)= Pe—1, n—~1)[1— (k| k=1, n—1)]
xexp[—AEk,n|k—1, n—1)/k, T)

Pllnk, n—1) =Pk n—1)Z—2)[1~ ¢ (k| b, n—1)]
xexp|—AE(knlk nlk,n—1)/k T)

Plk nk+1, n~1)=Ple+1, n—D[1— g k| k+1, n—1)
xexpl—AE(k nik+1, n—1)/k, T]
(2a)

where ()47, # - 1} is the conditional probability that the site
in layer 4, heing one of the nearest neighbor sites of (# - Dith
segment, is occupied by tail or head segments given that the
{n — l)th segment is at a site in the &' (W'=L+ 1 A &=1).

(2) for 3<n<r:

Pk nk—1,n—1)=

Plk~1,n—1; k-2, n—2) DW(F,F)

(1—glkl =1, n—14—2, n—2)]
xexp{—~AE(knlk—1,n—1k—2,n—2)/k, T))
+ Plk~1, n—1; k—1, n—2) DW(L,F)

[1~ @kl k=1, n—1; k—1,n—2)]

xexp[—AEk n| k—1,n—1; k—1, n—2)/k, T)

Plen;kn—1)=
Plhn—1;k~1,n—2) DW(F,L)
{1-¢k|kn—1;k—1,1n—2)]
xexp{—AE(k, nlkn—1;k—1, n—2)/k, T
+F(k, n—1; k,n—2) DW(L, L)
(1— ¢kl & n—1; &, n—2)]
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xexp[—AE(k n|kn—1,kn—2)/kT)]
+Plk,n—1L: k+1,7n—2) DWD,L)
(1—¢(k/k, n—1; k+1, n—2))
xexpl—AE(k nlkn—1,k+1, n—2)/kT)

Pl n k41, n—1)=

[l n=1:k+1,n—2) DW(L.D)
(1—-¢(klk+1, n—1; £+1, n—2)]
xexp(—AE(k n| k+1, n—1k+1, n—2)/ I T)
+Plk+1, n;k+2,n—1) DW(D,D)

-2k -1 n—1k+2,n—2)]

xXexp[~AE(k nlk+1, n—12+2, n—2)/k, T

(2b)

where ¢(i}/" v 1; £". #-2) is the conditional probability
that the site v wyer £, being one of the nearest neighbor sites
of (- Dth segment, is occupied by head or tail segment,
given that the (n-2)th segment is at a site in layer A
(k" =k=2.k=1,k k+1, k+2) and the (- 1)th segment at a
site in layer K(k'= L~ 1, &, k+1). Also ALk n)k', n - 1) in Eq.
(Za) and AEGan|l. n—1: 8", n-2) in Eq. (2h) are defined as
fit  AE(k, n)k',n— 1} for s=2. The nearest neighbor seg-
ment-segment interaction energy of the (# - 1)th segment in
layer 2 which results from placing the nth segment at a site
in tayer 4° given that the (# ~ I)th segment is at a site laver 4",

i) AEK n|k,n—1; k", n—2 for 3<n<r. The nearest
neighbor segment-segment interaction encrgy of the
(# - 1)th segment in layer £’ which results from placing the
nth segment at a site in layer £, given that the (7 - 2)th seg-
ment is at a site in layer 7 and the (# — 1)th segment at a site
in layer 4.

Egs. (2a) and (2b). with chain stiffness incorporated, can
be regarded as the extended version of Whittington's recur-
rence equation which obeys Setf-Consistent diffusion equa-
tions."""* Also. it is possible that we can approximately
derive diffusion equations from Egs. (2a) and (2b) by using
the same approximation as Levine ef «l.’s. Therefore Egs.
(2a) and {2b), in spite of their lattice description. could have
some correspondence to diffusion equation approach of poly-
mer system.'? However this topic is not our concern here.

Let #{4} be the probability that a site in layer £ is occupied
by the tail segment and  be the surface coverage of the head
group (r.e., o=N/f, where N\ is total number of amphiphiles
adsorbed at one interface). The boundary condition at the
two interfaces requires

#{k), =0 at k<1

(3)

Considering chain connection up to two b.oncl order and using
the simple mean field approximation.’® we can write the
energy terms in Egs. (2a) and (2b) as follows:

(iyfor n=2;

AE(L2ILD=¢(1) - e +H(Z-3)[¢pQ); - M+ o - "]
AEQ.2[1, )=(Z~2)[¢(1); - "+ - ™)

AE(D,2)D D)=¢(D-1), - &*» +HZ~3)[#(D}, - e t-g-ehn)
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AE(D-1,2|D1))=(Z—-2)[¢(D) - e™+0 - ™)

(4a)
(i) for 3gn<r;
AE(k n| k=1, k~2, n—2)=(Z—2) p{k—1), - £**
+&nr {[¢(k+1):+(Z—2)¢(k),]5"+8“_. co-e™
+820l(Z—2)0 < ™+ ] (3<k< D-1)

AE( n|k—1,n—1,k—1, n—2)=

(Z—3)p(k—1),+ $(k—2) Je**

+8%:(Z—3)0 - e+ et ]+ 8y - ™

+85 s [$(£+1), +H(Z—2)g(R))e™

+Onp 0 " +8, (220 - M+ ety 28k=D)

AE(k, n|k—1, n—1; & #n—2) . forbidden (self-reversal case)

AER, n|kn—1k—1, n—2)=

[¢(2+ 1) +(Z—3) (k) ]e*

F+ 8oy 0 e+ 8y ol(Z—3)a M+ )

+0nr {¢(B+ 10+ (Z—3)$(R):+ p(k—1)]e ¥

+8u2 0 &M+ 00 M+ [(Z—3)0 - M)

(2=ksD)

ARk, n|k, n—]; k,n—2)=
[p(k+ 1 HZ —)p (k) + @ (k~—1))e"*
+8(Z—Do - e + et ) 40y, 0™
+&ap-1- 0 e 4+8 [(Z—4)o - M+
+8a s {p(R+ 1D HZ-3)g (k) + gk — 1), Je*
+8(Z—3)o - ™+ ]+ 84z 0 M
+&% 0™+ [(Z—o - M+ e*]}
(1=k=<D)

ARk, nlk,n—1k+1,n-2)=

(Z—3) (k) + g (B— 1))

+ 0 [(Z—38)o - M+ et ]+ - - e™

+8 o {6+ 1), HZ—3) p(B)+ p(—1),)e™
+ 8, [(Z—3)o Mt ]+et ) 6py- 00 ™

+5x,n-|‘0'€M} (lékéD——l)
AE(k, n|k+1, n—1; k, n—2) forbidden (self-reversal case)

AE(k, nlk+1, n—1,k+1,n—2)=
[p(k+2)+(Z—3) - p(B+1))e*
+8pp-zc 0 e™+8, 0 [(Z—3) - - eM+et)
+ 80, {{(Z—2)p (k) + p(k—1),)c*
+8x[(Z~20 - P+ 48410 00 €¥)
(l=k=D-1)

AE(k, n|k+1, n—1,k+2,n—2)=(Z—2)p(k+1), - "
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+0nr {(Z—2)p(R):+ 3R —1)p)e" +84, [(Z—2)0 - ™

+et )48y, a0 e} (1=k=D-2)
(4b)
where §;; is Kronecker delta, and these energy terms are
some what different from monolayer case due to the pre-
sence of another interface. The terms including g, , corres-
pond to the correction energy of the #th segment {end seg-
ment). We must realize that above 9 energy terms are contri-
buted by the only nearest neighbor interaction energy of the
chain molecules. The bent energy is automatically included
in the statistical bond pair weights { DW} corresponding to
each orientation of 9 bond pairs. In order to simplity Egs. (2a)
and (2b). we assume independent approximation in each
layer."® Therefore all the conditonal probability terms
(%, )in Egs. (2a) and (2b) can be approximated by

plk] , }=¢(k)=@(k)+olds,+or0) (5)

where last term comes from the density of head groups
which are anchored to layers #=1 and A=1). In fact, Eqs.
{(4a), (4b), and (3} neglect the chain bond correlation which
was already known as very important in explaining anisotro-
pic nature of monolayer amphiphile molecules.'? We are now
studying this anisotropic effect by employing more sophisti-
cated approximation. From Eq. (5), Egs. (2a) and (2D} can be
rewritten as

(I)for n=2;

Defining P(%’, n—1)as 1—¢(k’), we have

G). P(k,m; k", n—1)
=Pk, n—NZ-2)[1-p(R)] xexp[— AE (k, n | k",
n—1)/k, T=[1—¢(&"N(Z—2)[1—- ${k)]
xexp[—AE(k, n|k’, n—1)/k,T)); for k=1 and
k=lor k=Dand ¥’ =D

(). Pk, n k", n—1)

=Pk’ , n—1)[1—¢(B)xexp[—AEk, n |k, n—1)/

k T ={1—g(£)][1— ¢(k) xexp{— AEk, n| &, n—1)

/b, T)), for k=2 and & =1, or 4=D—-1 and ¥’ =D
(iii). P(k, n; k", n—1)=0.; otherwise.

(2a")

(2).for 3an=r,
Pk, n k-1, n—D=Ple—1,n—1;k—2, n—2) Wr.r

+P(k_1, ”_1; k_l, H—Z)Wu-‘k

Ple,n:k,n—)= Pl n—1k—1, n—20Ws, ,
+ Pk, n—1; k, n—2)Wop s+ Plk, n—1; k41, n—2) Wy

Pk, k41, n—1)=Plh+1,n—1 b+ 1, n—2W.p
+Pk+1, n—1; k42, 7—2) W »
where
Wera=[1—¢(R) DW(F,F)
xexp—AE(k,n|k—1,n—1,k—2,n—2)/k, T)
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WLF. n=[1_¢(k)]DW(Lr F)
xXexp—AE(k, nlk—1,n—1; k=1, n—2)/k, T]

Weia=[1—¢{&)]DW(F,L)
xexp{—AEk, nlk,n—1 k—1,n—2)/k, T]

Wea=[1—¢ ()] DWI(L,L)
xexp(—AE(k, n|k,n—1 k,n~2)/ b T]

WDL. x=[1_¢(k)]DW(D‘ L) .
xexp[—AE(k, |k, nlk,n—1;k+1, n—2)/k, T]

Ww. x=[1‘_¢(k)]DW(L- D)
xexp[—AE(k, n|k+1, n—1 k+1, n—2)/k, T]

Woo, x==[1— ¢ ()] DW(D, D)
xexpl—AE((k, nlk+1,n—1 2+2,n—2)/k T}
(2b’)

In Eq. (2b’), each element of the set { W, s . h=F. 1. 12} re-
presents one-step conformational weight of a chain segment
to be generated with (b} direction in layer £ when its previous
adjacent segment already occupied a site with (a} direction,
where (a) and (b) denote one of the three directions {7.c., for-
ward (F), lateral (1.), and downward(1)) directions).
Derivation of Conformational Properties. liys. (2a"
and {2b’) are basic equations which are required to generate
the various conformations of chain motecule in the inhomo-
geneous system. Since these equations are too complicated
to treat. we employ the concept of matrix formalism which
has been used by many authors.*7 However it is necessary to
extend the matrix formalism in order to adopt our method.
Therefore. by careful inspection, we introduce 3/x 31}
generating matrix & and 342 x 1 column vector Pl») which are
similar to the matrix of Markov theory.'® Detailed notations
for G and An) satisfying Eqgs. (22} and (2b’) are given by

(L, D, 0 0 o - « 0
L, L, D, 0 0 :
¢ F Lg D 0

: 0
6= 0 ; :
: Foor Loa Dp s O
- : 0 Foi Looy Dy,
-0 0 0 Fn Ln E
Weexn Ween 0 0 0 0
F,=| O 0 0 Ly= Wera Wipn Wois
0 0 0 0 0 0
0 0 0 0 0 0
D=0 0 0 o= 0 0 0
0 Wiox Wonx 0 0 0
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[ P(n,1)
P(n2)
: Ia(k,n;k—l,n—l)

Pn)=|P(n, k) P(n, ky=| Ple,n; k, n—1)
: Pk, n;k+1,n—1)

P(n.D—1)

[ P(n,D)
(6}
where the boundary condition at the two interfaces require
BQ1, n;0,n—1)=B(D, n; D+1, n—1)=0. N

Therefore. from Eq. (6), we can rewrite Eqs. (24’ and {2h) as
matrix notation:

Kn)=G-Pn—-1)=G* P(n—2)=.-=G"". P(2)
i for 38 n= . 8

where A2) represents the bond initiation column vector cor-
responding to all the possible orientations of the first bond
whose one end (# = 1) is localized to the first of last interface
{k=1or {). From tq. (2a”), K2)is given by

[ P(2,1)
P2, 2)
0
P2)= 0 (9)
0
P2 D-1)
| P2, D} |
where each element of &2} is
0 PR.2;1,1)
P )=} PQ12;1,1) PQ22)= 0
0 0
1] 0
P2, D-1)= R 0 P2,D)=| P(D2:D1)
P(D-1,2:D1) )]

a0

We can think that the bond initiation column vector A2) is
composed of two vectors P (2} and PA2) which are the bond
initiation vectors of the chain molecule whose first segment
is anchored to the first (# = 1) and the second(/ = /)) interfaces

P2 [0
PQ2,2) :
00 0
PQ=| P@= : an
0 0
: P2,D-1)
0 | | P2, D)
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respectively, Thus P(2) and PA2) can be written

as P(2)+P42)=PA2). The free energy expressions’ of the
chain molecule attached to each interface at layer width D
{cas of no solvent) are given as

{i} The free energy of the chain molecule at the first interface;

F(DV/kT=—In[UT ¢ P,Q2)] (12a)
{ii} ‘The free energy of the molecule at the second interface;
E(D)/kT=—In[UT- G"-*- P,(2)], {12b)

where the vector Uis 3£)x 1 column vector whose elements
are all 1, and superscript 7 means transpose of the vector.
Because of the symmetry of the bilayer system, Eqg. (12a} is
equal to Eqg. (12b). Therefore

R(D)/kT=FDYhkT. a3

‘I'his symmetry property comes from the our assumption that
equal number of molecules is anchored to each interface. The
free energy of separation,”’ 4 /1) relative to when the inter-
faces are separated by 2r which represents minimwm layer
width where the two regions of tail segments in bilayer no
longer overlap each other in the cubic lattice, is

AFDY R T=dF (D) T+ER(DY/ AT
—FR@r)/kT—FE@r)/kT)).

Using the symmetry property of free energy in Lq. (1.3}, we
can reduce Eq. (14) to

ARD)/ kyT=20[F (D) by T—F(2¢)/ kT

=20[R(D)/ ke T—F2r)/ R T).

Although we use the free energy separation ol short chain
molecule in the lattice. Egs. {14) and (14" correspond to Mu-
thukumar’s free energy expression which was derived on the
basis of Self-Consistent field method.'?

In order to derive the equation of segment density, let
Win.b:7) be r step conformational weight of r segments am-
phiphile whose nth segment occupies a site in layer
M= 1...1). Using Egs. (6)~(11) and applying Scheutjens and
Fleer’s method to our bilayer problem, we can write W A7)
as follows:

(1) Win, k;r)=8,[U- G- P.Q2)]
+8ro[UT- G Py(2)] for n=1:
(2 Win, b, r)=U"- G- [G"* P(2))x
=07 G [P(n)): for 2€a<r:

(4’)

(15a)

(15b)

where [Pn))t is

0 ]
0
[P(m))=|P(n,k)| } Thek thvector clement (I8
0 defined in Eq. (6)
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Following the method due to Scheutiens and Fleer?, we
assume that segment density of head and tail group in layer
k.4 (k) is proportional to th summation of Win. &) over all
the 7 chain segments. By some algebra, we obtain

$(k)=2a z W ki) U™ G P2)

for k=1, D. an

where the factor 2 results from the existence of two inter-
faces. Eq. (17) is the /) simultaneous nonlinear equations hav-
ing £ variables { ¢ (4); k= 1.....02} which can be solved by
numerical scheme.

Computational Method. Eq. (17) is the {) simultaneous
nonlinear eguations with £ unknown variables §{@ (%),
k=1,...,D}. These equations can be solved by numerical
method. We make use of the iteration method based on Min-
Pack algorithm'® which is very efficient in nonlinear equa-
tions. As the first computational step, we assign a plausible
set of {# (%)} by initial guess. Because the value of #(%} is
confined to the region 0<@(/)<1, we convert variable (%)
into X,=In[UM(1-#(M]*. Taking { X} to be the iteration
varjables of our numerical procedure and substituting these
initial variables into Eq. (17) and using the powerful al-
gorithm which is designed to improve the speed of con-
vergence, we obtain new set of variables, which subsequent-
ly enters following iteration cycle. This iteration cycle is
repeated until reasonable precision is achieved (in our paper,
error limit 107%). In our paper, for the convenience's sake, we
adopt Rice's energy parameters® which are ¢*= - 50 K,
eM_et=ef= _100 K in unit of absolute temperature. We
choose r=10 and 7'=300 K. Also we define the stiffness
parameter as /= — ¢,/ "' Using IBM 3090 computer, we ob-
tain the mean density profiles { ¢(#}} of amphiphile chain
with various stiffness parameters (/'=0, 2, 4) and surface
coverages (0.2< 0<0.7).

Result and Discussion

Figures. 1{a)-{d) represent free energy separation curve
v, layer width at various surface coverage (¢=1.2, 0.3, 0.5,
and 0.7). At the moderate surface coverage (¢=1.2 and 0.3).
free energy curves tend to have minimum value. These re-
sults show that the bilayer system can have favorable layer
width corresponding to the state having favorable free
energy separation. However at the high coverage (¢=0.5and
(0.7), as shown by Figures 1(c) and (d). the system does not
have such a favorable layer width. Although we do not cal-
culate the free energy separation throughout all the range
(J.e., <o <1), we do not exclude the possiblity that critical
¢, where the minimum region of free energy separation
disappears. will exist. In our free energy data. although the
value of ¢, may depend on lattice type, it is assumed to be in
the region of 0.35<s,<0.4. At ¢<0.35, since there are
relatively little segment density, the two interfacial regions
of chain molecules can approach each other to have thermo-
dynamically favorable bilayer width. Therefore we can re-
alize that at that coverage region, major contribution to the
chain conformation of amphiphiles results from attraction
energy (i.c., energetic effect) between chain segments. As
shown by Figures 1(a) and (b), the pattern of free energy
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Figure 1. Free energy separation F(UIWA,T as a function of layer width £ at =300 K and s = L0, with the vanation of chain stiffness para-

meter {/'=0, 2, 4): (a} g=11.2, (b) 0=0.3. (£} 6=0.5, and M) 6=0.7.

minimum range at ¢=1.2 is broader than that of at #=1{.3.
These results show that in the region of o <1.35. the degree
of stability for the bilayer formation depends on the degree of
chain attractive interaction which is affected by the variation
of surface coverage. Therefore at ¢< 0.33, even if favorable
bilayer formation is possible, the stability problem for the
bilayer formation has to be considered when « becomes more
dilute. At ¢>0.4, however, above favorable bilayer width do
not exist. These results represent that at that region, bilayer
system smust increase its width to minimize increased repul-
sive interaction (/.c., packing effect) caused by high segment
density of inner layer region.

Also Figures 1(a)-(d) show that at o= (.2, (1.3, 0.5, and 0.7
flexible chain has lower free energy than semiflexible chain,
which inplies that high degree of stiffness of tail chain in the
bilayer system makes the chain conformation somewhat
unstable. However, as the layer width increases, the con-
tribution of chain stiffness to free energy separation becomes
much smaller, so that at relatively high layer width, chain
stiffness effect can be negligible. Thus we can realize that ef-
tect of chain stiffness occur mainly in the region of small
layer width where two regions of tail chains overlap each
other to a large extent. Ate <(.35, where favorabie layer
width occurs, we can also see that the range of favorable

layer width is little affected by chain stiffness.

Figures 2 and 3 show segment density profiles with
to layer number. These patterns are similar to Muthukumar’s
result’. However we can see that segment density of semiflexi-
ble chain is higher than that of flexible chain in the inner
layer region of bilayer system whereas the former is smaller
than the latter in the region close to two interfaces.
Therefore segment density profiles of semiflexible chain in
hilayer can be characterized by smoother patterns than those
of flexible chain.

Conclusion

We derive free energy expression and segment density
profiles of bilayer amphiphile molecules having various chain
stiffness by use of lattice model. Our result shows that within
moderate surface coverage region, bilayer system for the
case of no other constraints except two interfaces, can have
favorable layer width corresponding to free energy minimum
conditions which is mainly caused by attractive interaction
between chain segments, whereas at high surface coverage
region, bilayer can not have such a favorable layer width due
to increased segment density of inner layer region which
makes repulsive interaction between chain segments domi-
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nant. In deriving Eqgs. (14) and (17), we use the conventional
simple approximations (see Egs. (4a), (4b}, (3)) which
disregard detailed chain bond correlation. Therefore it may
mistreat entropic and enthalpic contributions to conforma-
tional properties. but our result has the same treand as
Muthukumar’s self-consistent theory which is described by
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polymer diffusion equation®. Now, we are studying effect of
bond correlation which is regarded as very important in
anisotropic inhomogeneous system as Cantor and Macllory"
already showed in their paper on the monolayer amphiphile
molecules. They show that chain bond correlation which in-
corporates the anisotropy partly has severe effect on the
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monolayer surfactant. Therefore, in order to consider the ef-
fect of the anisotropy, we must use more refined approxima-
tion by which both energetic and entropic contributions to
free energy are well described. In the future, by introducing
the chain anisotropy in our approximation, we will study
more general behavior of terminally anchored chain
molecules.
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A phenomenological theory of viscosity which has been proposed by authors is applied to liquid metals for which the calcula-
tion is a severe test for liquid theories. The thermodynamic properties used in the calculations can be obtained by using the
Roulette liquid theory. The calculated values of the viscosities for liquid metals are in good agreements with the observed

values.

Introduction

The viscosities of liquid metals play an important role in
liquid metal processing operation. Interests in the viscosity
of liquid metals today stem from practical consideration,
such as their use as atomic reactor coolants and from
philosophical consideration, such as the fact that their struc-
tural simplicity makes them good media to test the current
theories of the liquid state.

For liquid metals low pressures at melting, small dif-
ferances in volume between liquid and solid, and rather large
temperature ranges of the liquid state can lead to large dif-
ferances between observed and calculated values for ther-
modynamic properties. Viscosity data’ indicate that the hole
size in metal melts is small relative to the size of metal stom

but is comparable to the volume of metal ion differantly from
other liquids. Therefore the calculation for liquid metals is a
severe test for liquid theories.

Among the current theories used in the calculation of the
viscosity of liquid metals, the model theories of Andrade? and
Eyring® have been often used. Their equations for the
viscosity of liquid metals have proved to be useful for the
calculation of the viscosity, but they have adjustable
parameters and exponential form which is not physically
meaningful.

A phenomenological theory* of viscosity which was pro-
posed by authors had been sucessfully applied to normai li-
quid, water® and helium® which exhibits abnormal behavior
compared to other ordinary liquids. This theory also can be
used in the form of the reduced equation’ because it does not



