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Fifty eight obsidian artifacts and four obsidian source samples have been analyzed by instrumental neutron activation ana­lysis. Artifact samples have been classified i교to classes by unsupervistd learning techniques such as eigenvector projection and nonlinear mapping. The source samples have thereafter been connected to the classes by the supervised learning techniques such as SLDA and SIMCA so as to characterize each class by possible source sites. Some difference attributable to different nonlinear mapping techniques and the elemental effects on the separation between classes have been discussed.
Introduction

Considerable st니dies have been made on obsidian samples 
because, as a volcanic glass, the overall composition within a 
given flow tends to be homogeneous1. Therefore, in many 
cases the elemental composition is characteristic of the in- 
divid니al source. The samples are taken from sources as well 
as from archaeological sites. The multivariate statistical 
analyses of the elemental composition of various obsidian 
samples have been found to provide diagnostic patterns sug­
gesting possibilities of classification of obsidian artifacts and 
hence the correlation of these artifacts with their source and 
history1'3.

The multivariate statistical methods of analysis employed 
in this study are based on both supervised and unsupervised 
pattern recognition techniques. The unsupervised portion of 
the pattern recognition is constituted of mapping methods 
such as the eigenvector projection4,5 and the nonlinear 
method "4.6 The supervised pattern recognition employs a 
program called SIMCA, a program using disjoint principal 
component method to obtain models of known classes of ob­
jects, to which unclassified samples can be compared and 
identified7. This supervised pattern recognition also employs 
Fishefs discriminant analysis, a territorial mapping method 
of unclassified samples7,8.

The classification of fifty eight obsidian artifacts have 
first been performed in this study by a nonlinear method in 
combination with the eigenvector projection. This part of 
st니dy thus has been used as the unsupervised pattern recog­
nition method. The res니Its thus obtained have been used as a 
preliminary identification of the class membership. The 
supervised pattern recognition has thereafter been employed 
in this study for analyzing other objects in order to relate 
them to the predetermined classes.

Experimental

Apparatus. Gamma-ray counting was done with a 
HPGe detector(GEM-15180) with a dimension of 46.6 mm 
diameter x 53.3 mm length, which is coupled with an 
ORTEC 8192 channel analyzer. Gamma-ray energy and 
peak areas have been calculated by ADCAM 100 soft wares 
stored in the computing system.

Table 1. Sampling Sites and Their Corresponding Symbols for Ob­sidian ,Series Number ofsymbol Samples Sites Feature1-8 8 Yondae-do, Tongyung, ScraperKyungnam△ 9, 10 2 Sangnodae-do, Tongyung, ScraperKyungnam11-19 9 Yokchi-do, Tongyung, ScraperKyungnam20-22 3 Dongsamdong, Pusan Scraper23, 24 2 Yongsundong, Pusan Scraper25 1 P 니 san Scraper26 1 Shinam-ni, Uljoo, ScraperKyugnam
▼ 27 1 Angang, Wolsong, UnknownKyungbuk28-30* 3 Mt. Kumsung, Euiseong,Ky니ngbukV 3P 1 Osan-ni, Yangyang,Kangwon32-55 24 Sangmooryong-ni, Yangku, ScraperKangwon Burin,Awl
■ 56, 57 2 Yupan, Nanam, Hambuk Scraper□ 58 1 Jiandao, Manzhou, China ScraperT 59* 1 Kyushu, Japan60-62 3 Kagoshima, Kyushu, Japan ScraperSeries numbers marked by asterisk mean obsidian sources, (a) meansnumber
Sampling and Pretreatments. Obsidian artifacts and 

source samples collected for the elemental analyses are given 
in Table 1 together with corresponding symbols. The 
samples were washed with acetone as well as with dilute 
nitric acid. The samples were finally washed with distilled 
water and dried at 110°C for 2 hours. An amount of 100-200 
mg was cut by a tungsten-carbide edge from each sample 
and pounded to powder in an agate mortar. An about 40 mg 
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amount of each sample was a accurately weighed and sealed 
in a silica glass vial.

Neutron Activation Analysis. Each silica glass vial was 
attached on its surface by known amounts of Au and Co as 
single comparators* 9. Use of two nuclides with different 
nuclear properties facilitates the evaluation of effective cross 
sections of all nuclides involved in activation for a given con­
ditions10.

Next the covariance matrix C is generated, each element C* 
of whch is given as

c" = W(x“—X)(x〃—X) ⑵

The eigen values. Aa, and eigenvectors ^fcfor k = 1 to w are then 
calculated by solving

C. 四드私 , 映 (3)

For display purposes in two dimensions, the basis vectors^} 
and 必2 corresponding to the two largest eigenvalues A)and A2

The vials were irradiated in the rotary specimen rack of 
TRIGA MARK Ill reactor for abo니t 1() ho니rs. After irradia­
tion the samples were allowed to cool for 2 days. The s니rfa如 

of each silica vial was cleaned with dilute nitric acid and the 
sealed vial was placed on a given geometry of detector (the 
background of the vial was ne이igible). The same vial was re­
counted at another given geometry for longer nuclides after 1 
weeks' cooling.

Gamma-ray energy and peak areas were calculated by 
ADCAM 100 soft wares as described above. Calculation of 
elemental contents was carried out as shown in the pro­
cedure described in the previous papers9-11 by using flux in­
dices at the irradiation condition, nuclear data given in 
references and counting efficiency curves at given geome­
tries.

A total of 14 elements were determined. Those element 
analyzed and used for this study were sodium, potassium, 
samarium, lanthanum, cerium, scandium, thorium, cesium, 
hafnium, lutetium, rubidium, iron, terbium and antimony.

The Pattern Recognition Approach.

The classification of obsidian artifacts has generally been 
carried out by previo니s authors on the basis of their origin1
i.e. t geographical location of obsidian sources. Unfortunately 
obsidian sources origined from South Korea are scarcely 
found, because it is located outside volcanic regions.

The first aim of this study was therefore put on the possi­
ble classification of artifacts on the basis of unsupervised 
learning techniques. For the purpose, display methods were 
applied. The reason for this is that the human is the best pat­
tern recognizer in the familiar two- or three-dimensional 
space.

Unsupervised Learning.
Eigenvector Projection. The set of data on m samples 

with n variables measured (mxn data) can be represented as 
a set of m points in n dimensional space. The method starts 
by calculation of n variable means Xgk = 1 to n) as 

are used as a projection plane. The eigenvector plots are the 
linear projections because the new two-space coordinates 
are the linear combinations of all the original coordinates^. 
Additionally, the projections are the best linear projections 
which can be obtained. Since such an eigenvalue is propor­
tional to the variance along its corresponding eigenvector, 
the percent variance retained by the eigenvector projection 
can be calculated. This percent variance is 니scful for deter­
mining the reliability of interpretations macle using a projec­
tion.

Nonlinear Mapping(NLM). A nonlinear map is a compres­
sion of w - dimensional hyperspace into two dimensions 
brought about with a minimum of distortion in the interpoint 
distances. This method, suggested by Sammon6 and applied 
by Kowalski and Bender4 is presented as follows.

The eigenvector plot described above is used as the star­
ting config니ration for NLM map.4 All of the n - space inter­
point distance, d*/7 are calculated as

= (X,»—X"］“ ⑷

and all of the two-space interpoint distance, r//：/ are calculated 
as

4,=［有{珞(/')一 匕招')}T〃 (5)
9=1

where the Ys are f이jnd by the rotation matrix that 
diagonalizes C in equation (3). The object here is iteratively 
to change the two coordinates (匕］and V/2) for each point 匕 

so as to minimize an error function E, defined as

p(n\— y 0： —4(")尸 ®

The minimization has been done to preserve interpoint di­
stances by finding djs that are as close as possible to d广s. 
The value of p in equation (6) is fixed to 2 in this st니dyl The 
unknows in this error function are the two-space coordinates 
from equation (5).

In order to iteratively change the two-space coordinates 
and minimize E, a gradient method can be 니sed. Sammon us­
ed the method of steepest descent. A software has been de­
veloped in this laboratory according to Sammon's s니ggestion 
and used in this study. I'he new two-space config니ration at 
time I' + 1 is given by

KM' +D= K談')一(MF) •厶，"(Z') (7)

where

.(卩、_ gl'、),研E(") 
M —百商W 万商硏7

(8)

and MF is magic factor which is empirically given to be 
MF=0.3~().4. The partial derivatives are given by Sam­
mon6.

For NLM map, as described above, a plotting has been 
carried out by using two eigenvectors which are correspon­
ding to two largest eigenvalues as the starting config니ra­
tio/. However Sammon's original paper suggested to use 
two original coordinates with largest variances 거s starting 
configurations and the suggestion was once adopted by
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T・bl@2・ Me히} V지ues (ppm) and Standard Deviations of Elemental Contents in ObsidianElements Na K Sm La Ce Sc ThMean values 3.79x104 2.57 xlO4 6.61 47.6 78.4 2.47 22.1Standard deviations 7.04 xlO4 1.04x104 6.51 36.4 58.1 4.04 15.3
Elements Cs Hf Lu Rb Fe Tb SbMean values 6.36 5.09 0.413 225 1.14X104 1.08 0.337Standard deviations 4.48 4.29 0.292 98.2 6.00xl(H 1.07 0.331

Boulle and Peisach12 for the visual display of the ar­
chaeological artifacts.

In this study both processes have been adopted as the 
nonlinear mapping approaches and have been compared. 
1 he results showed some difference between processes as 
discussed below 나nder "Results and Discussion".

Supervised Learning.
이 Isolinear Multiple Component An- 

alyaisk From the unsupervised learning, similar obsidian ar­
tifacts th저t may represent a class can be identified. These ar­
tifacts can then be modeled as linear struct니res using SIM- 
CA〈 The concept is to fit each class with a minimal set of 
principal components sufficient to reproduce the variance st- 
ruct니re within that class. By comparing the residuals of the 
fit of an object to the class model with the average value of 
that fit for objects belonging to the class, the probability of 
the particular object to belong to the particular class can be 
tested. This modeling approach permits the testing of the 
class assignments derived from the unsupervised learning 
and provides an added measure of confidence in the validity 
of the assigned classes.

SLDA (St砒istic이 Linear Discriminant Analysis). The 
discriminant function 匕 is a linear combination of original or 
auto으caled variables and is given in 난蛇 form:

匕=%瓦］+이同1---- 卜%初4---- Vvnzin (9)

In vector notation, equation (9) can be written as

(10

where 匕 is the set of discriminant coefficients and Zi} is the 
sample vector of individual i. The projection of variables Z冇 

onto the vector described by discriminant coefficients V are 
given by 丫 드 VZ. In order to determine the discriminant 
coefficients, the following equation (11) can be used accor­
ding to Fisher's criterion.

W^BV=LV (11)

where W and B are the within-class and between-class 
dispersions for the projected points. From this equation, it is 
recognized that the coefficients V are given by eigenvec­
tor coefficients of matrix 0이3 and L is the corresponding 
eigenvalue. Since L is defined as the ratio of the be­
tween-class dispersion to the within-class dispersion to ob­
tain the maximum discrimination, the eigenvector associated 
with the largest eigenvalue of matrix HgB 아lould be used as 
discriminant coefficients.

In a two class problem, it is not necessary to solve for the 
eigenvalues of W~as the vector given by BV is in the 
same direction as 나le vector D of difference between two 
means13. If the vector D of the difference is defined as

D=由一由 (12)

a new set of discriminant coefficients V2 is obtained by

14= W~lD (13)

A computational example of how to determine V2 in practice 
is given by Kendall14. Obsidian sources have been classified 
according to their positions on the discriminant axis as com­
pared to the position of centroids of the classes of obsidian 
artifacts.7,15

A pattern consisting of many parameters often contains a 
lot of noise, i.e., redundant parameters. To trace redundant 
variable옹 several criteria are available15. Criteria based on di­
scriminant functions give a large importance to a variable 
when the abs시ute value of the corresponding weight coeffi­
cient is higher, provided that the variable have been standar­
dized. A direct method is to determine 난蛇 contribution per­
centage of each variable to the total distance If in the discri­
minant space, which is the distance between the centroids of 
the groups considered. The contribution percentage of vari­
able j is given as

WOx 任 fl/。 (14)

where 匕 is the weight coefficient of the discriminant func­
tion for 丿th variable and

"쯔三즈므 。5)

where the overall standard deviation of the./th variable.
And •如,and xrtJ are mean values of jth variable in group p and 
r, respectively.
Thus

Dl = Z Ilf 丨 (16)

Results and Discussion

Forteen elements which were analyzed and used in this 
pattern recognition are given in Table 2 together with the 
means and standard deviations of the elemental contents for 
overall samples. The effect of very differing data ranges and 
variances of the various measured variables have been com-
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Table 3. Eigenvalues and Their Contribution (%)Components 1 2 3 4 5 6Eigenvalues 6.18 2.65 1.90 1.07 0.66 0.53Cumulative 44.1 63.1 76.6 84.3 89.0 92.8Contribution (%)
pensated by autoscaling the measured variables to produce 
''features" with means of zero and variances of unity8 using 
the data in Table 2.

The covariance matrix in equation (2) has been generated 
from the autoscaled data set. Forteen eigenvalues have been 
found by equation (3). The eigenvalues which are supposed 
to be important are given in Table 3 together with the con­
tribution of each principal component to total variance. 1'he 
eigenvector corresponding to each eigenvalue, normalized 
with the sum of the squares being one, has been calculated 
and are given in Table 4. The communalities of the input 
variables in each of the derived components, i.e., the fraction 
of total variance accounted for in each component, are also 
given in Table 4 to show the importance of a given element in 
a component.

An eigenvector projection plot is given in Fig니re 1 which 
is a plot of component 1 vs. component 2. Even tho니gh the 
two different classes are clearly shown, the 니sed percent 
variance, given as %，= 100(人1 + 入2)/£ Ai is only 63% and 
remaining 37% of the variance is lost in the projection.

The nonlinear mapping by error minimization has been 
supposed to be the most useful display of multidimensional 
data in a two-dimensional space. Two space coordinates are 
derived iteratively by equation (7). Figure 2 is the XLM of obsi­
dian artifacts and so니rce samples after allowing a certain num­
ber ot iteration. The mapping error defined by eq니ation (6) 
is also given in the figure. For this NLM, the eigenvector plot 
described for Figure 1 has been used as the starting con­
figuration as applied by Kowal이d and Bender4. Another NLM 
has been done by using two coordinates with largest vari­
ances as starting configurations6 and the results are given in 
Figure 3 for the comparison. In both figures classes are

separated but classification of unknown is more reliable us­
ing Figure 2 because the actual data str니cture is more faith­
fully represented in this figure.

Table 4. Eigenvector Coefficients, Communalities and Percentage of Variance for Each Element
Elements Eigenvector coefficients Communalities Percentage of variance accounted for inComp. 1 Comp. 2Comp. 1 Comp. 2 Comp. 1 Comp. 2Na -0.121 0.221 0.090 0.130 9.0 13.0K 0.238 -0.344 0.350 0.314 35.0 31.4Sm 0.345 0.252 0.737 0.169 73.8 16.9La 0.368 0.099 0.921 0.026 92.2 2.6Ce 0.342 -0.179 0.720 0.085 72.0 8.5Sc 0.049 0.548 0.015 0.797 1.5 79.8Th 0.270 -0.211 0.451 0.118 45.1 11.8Cs -0.174 -0.249 0.187 0.164 18.7 16.4Hf 0.333 -0.055 0.684 0.008 68.5 0.8Lu 0.345 0.221 0.734 0.130 73.4 13.0Rb 0.279 -0.404 0.482 0.433 48.2 43.3Fe 0.055 -0.055 0.019 0.170 1.9 17.0Tb 0.351 0.199 0.759 0.106 76.0 10.6Sb -0.065 -0.036 0.026 0.003 2.6 0.3
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Figure 3. Nonlinear mapping using two coordinates with largest variances.
As shouTi in Figure 2 and Table 1, obsidian artifacts are 

separated into two classes, /.c.. the class ^(1-19) and ▲ 
(2(1-26) from Kyungnam-P나san and the classed I-55) from 
Kangwon. Figure 2 shows also that three so니!炊 samples + 
(6()-62) from Kyushu, Japan and three so니rce samples ▼ 
(28-30) from Kyungbuk are supposedly making respective 
isolated classes but need a further study beca나se of small 
number of source samples.

SLDA has been carried out for the linear separation of ar­
tifacts into two main classes (i.c., Kytmgnam-Pusan and 
Kangwon) as well as for possible similarity between source 
samples and classes. Since two class problem is involved 
here, the discriminant coefficient I-2 was estimated by equa­
tion (13). Obsidian scarce samples have been classified ac- 
cording to their position on the discriminant axis as com­
pared to the positions of centroids of the classes. As the 
res니Its a so나rce sample (T 59 in Table 1) from Kyushu, Japan 
was found to belong to the artifact class from Kyung- 
nam- Pusan. The results show also that two artifacts ■ (56, 
57) from Hamb니k belong to the artifact class from Kangwon.

To trace red니ndant variables, Fisher weights of elements 
defined as equation (14) have been calculated for the separa­
tion between two main classes in Figure 2. For this p니rpose,

m Na CH Rb II r K Cr » Th Th Lu La fE Sb

Figure 4. Fisher weights defined by equation (14).
mean values and eigenvector coefficients used in the calcula­
tion are given in Table 5. Fisher weights against elements 
are given in Figure 4. From the figure, seven elements such 
as Sm, \a. Cs, Rb, Uf, K and Ce have been selected as im­
portant elements, i.e., giving high contribution to the total 
distance // between classes. Using these elements, all obsi­
dian samples have been reclass迁ied for NLM and the res나Its 
are given in Figure 5. It can be noted that an almost identical 
display of the sample is obtained as Fig니re 2 which is obtain­
ed using all elements.

The two main classes of artifacts given in Fig니re 2 have 
been modeled as linear structures using SIMCA'. By com­
paring the residuals of the fit of source samples with the class 
model the probability of the particular source samples to 
belong to the particular class has further been estimated. 
The results showed that three source samples t (60-62) from 
Kyushu, Japan and three source samples ▼(28-30) from 
Ky니ngbuk were found to be outliers from both classes and 
were forming respective isolated classes. These results are in 
accord with those obtained by NLM.

A source sample T(59) from Kyushu, Japan was found to 
belong to the artifact class from Kynngnam- P니san The re­
sults showed also that two artifacts ・(56, 57) from Hamb니k 
were belong to the artifact class from Kangwon. These re­

Table 5. Data to Calc니ate Fisher WeightsElements Na K Sm La Ce Sc ThMean values Kyungnam 2.30x10^ 2.61 x 1()4 2.48 21.4 30.9 1.33 15.5(ppm) Kangwon 2.82 xW4 3.25 x H)4 9.67 72.7 143 1.12 30.0Eigenvector coefficients -0.404 -0.262 -0.828 0.313 -0.063 0.018 -0.023Elements Cs Hf Lu Rb Fe Tb SbMean values Kyungnam 9.51 2.07 0.255 201 7020 0.459 0.470(ppm) Kangwon 3.24 8.03 0.521 302 12100 1.66 0.286Eigenvector Coefficients 0.178 시).134 -0.020 0.159 -0.034 0.030 0.005
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Figure 5. Nonlinear mapping from eigenvector projections using 7 elements.
suits are in accord with those obtained by SLDA as well as 
NLM.
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2,5-Disubstituted tetrahydrofurans 11-13 were prepared by phenylselenoetherification of l-alkyl-4-phenyl-(3E)-butenols 8-10 under kinetic conditions. Their stereochemical outcome and reactivity were controlled by solvent, reaction temperature and the alkyl substituent. While the cyclization was stereorandom in dichloromethane, its stereoinduction was moderate to good in propionitrile and good to excellent in diethyl ether. The reaction went to completion in dichloromethane and pro- pion辻rile, but it did not in diethyl ether. The results can be rationalized by the degree of reversibility in the formation of epi- selenonium cation and 1,3-diaxial interactions in the transition state of the formation of tetrahydrofuranonium cation.
Introduction ructural units in many natural product옴 such a옹 polyether an­

tibiotics,1 furanoterpenes2 and polyene mycotoxins,3 there 
ha앙 been increasing interest in the synthesis of the ring sys-Since 2,5-disubstituted tetrahydrofurans are crucial st-


