SEs=1 32U M

Learning Performance and Design of

Cerebellum Model Linear Associator Network
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1. INTRODUCTION

The sensor integrated adaptive controller for co-
mplicated systems such as a robot is confined mos-
tly to the experimental stage because it requires
heavy computing of real time parameter identifica-
tion via processing of the sensory information ba-
sed on some performance criteria and management
of sensitivity on sensory readings. It usually invol-

ves a complex algorithm. For this reason, the ro-

bust adaptive controller based on the biclogical st-
ructure and function have drawn a great attention
recently®. How to achieve a great degree of the ro-
bustness, adaptation, real time control and easy
learning is the major focus on this area.

Research and application of the artificial neural
net to the robot system control and visual percep-
tion have become widely spreaded for a few years
around the world with the aim of realizing the st-

ructure and function of biological organisms espe-
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cially of human brain®. Through the massively pa-
rallel connection of processing elements with lear-
ning capability and fault-tolerance, the neural net
approach is known to overcome the limitation and
the weakness posed by the conventional sequential
information procssing®.

Some basic principles of how the cerebellum ac-
complishes motor behavior have been organized
into a mathematical model, Cerebellar Model Arti-
culated or Arithmetic Controller(CMAC) by Albus”
9. Since then, research on CMAC based general
learning controller has been attempted to control
various systems including a robot because of the
simple structured nature of the net. From the vie-
wpoint of the net characteristics, CMAC is rather
named as Cerebellum Model Linear Associator
Network(CMLAN).®,

The learning convergence of the CMLAN was
proved by author identifying the network as a kind
of one layer linear associator having a linear activa-
tion function. Two types of basic learning algori-

thms of CMLAN, sequential error correction(SEC)

and random error correction(REC) under delta
rule have been proposed and analyzed with diffe-
rent learning gains? ¥,

To apply CMLAN to various unmodeled or mo-
deled systems more efficiently, it is necessary to
analyze the effects of CMLAN control parameters
on the trained net. Parameters such as size of the
quantizing block K, learning gain G, input offset,
and ranges of input variables play a key role in the
learned performance, system memory require-
ment, and learning speed. However, these have not
been fully investigated yet. Values of control para-
meters are chosen in most cases on an ad hoc ba-
sis. Values of parameters should be determined, of
course, by also considering the shape of the desi-
red function to be trained and learning algorithms
applied.

In this paper, with the predetermined input va-

riable offset and ranges (refer to Hwang and Baek®”
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for the offset and uniform quantized scheme hand-
ling various input ranges), the interrelation of qua-
ntizing size K and learning gain G is investigated
with learning performance under two types of lear-
ning schemes, SEC and REC. The system memory
required for the CMLAN application depends on
the quantizing size K and ranges of the input varia-
bles.

Since an analytic approach only seems to be very
difficult and even impossible for this purpose, va-
rious simulations have been performed with quite
differenct shaped model functions and their results
were analyzed and some of them are presented. A
general step following design guide was set up th-
rough the characteristics of the CMLAN network

analyzed theoretically and experimentally.

2. SIMULATION

2—1. Basic Learning Algorithm

Equivalent learning period

Desired function to be learned:
P=sin(x)

Input range : x=[0, 360](deg)

Interval of sampled node inputs . 5 deg

Selected size of quantizing block :
5, 10, 20, 30, 40, 60

CMLAN offset : 1=1 deg

(1) Batch Sequential Error Correction(SEC)
Learning gains which avoids divergence at the
initial training are selected from
0.1~1.0 by 0.1
0.09~0.01 by 0.01
0.009~0.001 by 0.001
Number of training epoch : 0~100
Since the sampled node interval was specified as
5 deg, the case of K=5 does not have any interfe-
rence effect at all generating the orthogonal linear
independednt CMLAN mapped binary pattern ve-

ctors. As a result, the function is trained completely
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by one shot when gain is one. It is not shown clea-
rly in Fig. 1a because it was plotted at every trai-
ning epoch of 100.

As K increases from five, values of the initial
gains which avoid the divergence decrease. Gains
located closely to the initial divergent gain conve-
rge at the early stage but show a diverging trend
when the learning epoch increases.

The distributing and interference effect can be
seen in Fig. 1b. As values of K increase, the correc-
ted delta values are distributed over the input
space broadly resulting the fast RMS error conver-

gence. However, the converging rate weakens ear-
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(¢c) RMS error vs learning epoch with various G (K=40)

Fig. 1. Batch type SEC learning for P=sin(x)

lier than smaller values of K do as learning epoch
increases because of the interference.

When K is equal to 5, the converging slope is lo-
garithmically straight because of the orthogonality
of the pattern vectors. The slope is getting steep as
learning gain increases and becomes infinite when
the value of gain is one.

Fig. 1c shows the extended learning epoch up to
3000 with K=40. The parallel trend of the slopes
for the various gains is maintained until it reaches
its global minimum. It is not plotted but converged
RMS errors learned from the unlimited learning
epoch with G=0.05 and G=0.01 were 1.39531E-6
at the learning epoch of 19000 and 7.898105E-6 at
the learning epoch of 55500 respectively. In case of
the batch SEC, it can be seen that with a fixed K
the high gain allows the system to converge faster
and to reach lower global minimum than the low

gain once it is within the converging range.

(2) On-Line Sequential Error Correction (SEC)
Selected learning gain :
0.2~1.0 by 0.2
Number of training epoch : 0~100
As batch type SEC does, on-line SEC has the

same learning effect after one epoch training with
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K =5 as shown in Fig. 2a and Fig. 2b. Fig. 2a shows
the distributing and interference effect of K at the
learning epoch of 100. When the value of K is large,
the interference of learning is great with large va-
lues of G. However, this fact is rather slowly occur-
red with small values of K.

With smaller gains, the learned performance is
rather low because of the less distributing effects.
From this it can be seen that as K increases the
shape of the learned RMS error trend becomes ra-
ther a bowl type. This bowl shape is flattened as
learning epoch increases more and more.

At the early stage of learning, although it is not
shown clearly in Fig. 2b because of the plotting in-
terval of the epochs of learning, the large size of K
shows a better learning. It is noted, however, the
size of K should be proper to the shape of the func-
tion to be trained.

Fig. 2c shows trends of the various gains with a
fixed K of 40 when learning epoch is extended up
to 3000. It should be noted the smaller gain catches
up the larger gain as the learning epoch increases.
This is contrary to the result of the batch type SEC.
Note, however, practically the learning period is
also critical to the system performance as well. For
this reason, it is not always recommended to re-
duce the gain value too small based on the result

of Fig.2c when applying on-line SEC learning.
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Fig. 2. On-line type SEC learning for P=sin(x)

(3) Random Error Correction (REC)

Selected learning gain -

0.2~1.0 by 0.2

Number of training : 0~6000

At the first glance, Fig. 3a seems to show a chao-
tic behavior of trends with respect to G and K. The
REC learning has the similar behavior as SEC lea-
ming except the nonaccumulating property caused
by its random selection of input patterns during
each training epoch. However, in general, it has the
weakness of a rather large oscillation of the trained
performance because under this algorithm it does
not consider the history of learnings.

With the relatively small size of K, the interfere-
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nce is not serious as gain increases at the learning
number of 6000. The distributing effect is rather
good at high gains. However, this effect is interfe-
red by large values of K when the shape of function
has varying curvature over K. Trends of the perfo-
rmance from K=10 to K=60 can be explained by
the amount of the interaction between the distri-
buting and the interference with various gains at
this specific learned point.

Although it is not shown the number of training
exactly in Fig. 3b, all sampled node inputs are sele-
cted at least once at training number of 403 with
K=5. It is due to the characteristics of REC lear-
ning which randomly selects inputs among the sa-

mpled nodes.
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2—2. Functional Shape

Equivalent learning period
Learning algorithms :
On-line sequential error correction
Random error correction
Selected learning gain -
02~0.8 by 02
Interval of sampled node inputs - 15 deg
Selected size of quantizing block -
20, 30, 40, 60, 80, 120
CMLAN offset - 1=1deg

(1) Function 1
Desired function to be learned (Fig. 4a) -
P=cos(x) cos(y)

Input range - x, y=L[0, 180] (deg)

<> On-line SEC :

Trends of learned RMS errors were investigated
up to the learning epoch of 200. Fig. 5a shows the
RMS error versus learning gain G for various K
values at the learning epoch of 200. Fig 5b shows
the RMS error versus learning epoch for various
K values at G=0.2. Since the value of the sampled
node interval is 15, the learned performance is ex-
cellent with K=20.

The RMS error does not vary significantly as G

varies or learning epoch increases with relatively

(b} p=10x—2y

(2) p=cos(x) cos(y)

Fig. 4. Desired functions to be trained
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large K. This is due to the shape of the funtion to
be learned. In other words, the function to be trai-
ned has a rather steep variation of values over the
distributed region defined by K. As K increases,
the value of G does not improve the system perfor-
mance as it is desired. The difference between K=
20 and K =230 will be reduced if as the sampled in-
terval is defined less than 15 such as the sampled

interval of 5.
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CREC:
Trends of learned RMS errors were investigated

up to the learning number of 70000 which results

into the equivalent learning period of on-line SEC.
As shown in Fig. 6, except the oscillating behavior
of the learned RMS error with an increase of the
learning number, the REC learning shows the si-
milar learned performance and pattern of RMS er-

ror as on-line SEC does.
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Fig. 6. REC learning for P=cos(x) cos(y)

(2) Function 2
Desired function to be learned (Fig. 4b) :
P=10x—2y
Input range : x, y=[-150, 150]
<> On-line SEC :
Although the overall shape of the desired func-



tion is flat, with large value of K the effect of the
interference causled by the sequentially accumula-
ted learning error increases when learning gain is
high.

With small values of K such as 30 and 40, larger
gain shows better performance because of the
small distributing effect with little interference as
shown in Fig. 7a at the learning epoch of 200. As
K increases, the combined effect of the distribution
and interference makes the learned system be os-

cillatory with respect to gain.
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Fig. 7. On-line SEC learning for 10x—2y
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1t is shown that logarithmically straight variation
occurs at K=80 with respect to G. However, the
learned performance is quite poor compared to K
=60. It is expected the oscillating behavior will oc-
cur as learning epoch increases.

Similarly to the case of the function type 1, at
K=20 since the interval of the sampled node in-
puts is 15, the performance is rather excellent co-
mpared to other K values. Fig. 7b shows trends of
the RMS error versus the learning epoch at G=0.4

with various K values,
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OREC:

Since input nodes are selected randomly and the
desired function is also a rather flat shape, in case
of the large value of G the correction amount dist-
ributed by K is not accumulated much compared to
the on-line SEC. Fig. 8a shows logarithmically li-
near trend of the performance improval as gain in-
creases. Although it is not shown here, it is expec-
ted the effect of the gain gets smaller as the num-
ber of learning increases. Other trends can be ana-
lyzed similarly as on-line SEC. Fig. 8b shows tre-
nds of the RMS error versus the learning epoch at

G=0.8 with various K values.

3. DESIGN GUIDE

The input offset of CMLAN is related to the con-
tinuity property. With a fixed input space as the of-
fset of the quantized block becomes more precise,
the mapped non-dimensional CMLAN input space
gets bigger. As the CMLAN input space gets big-
ger, the size of the quantizing block should be pro-
perly increased to enlarge the distributing effect of
the error correction and to reduce the required sy-
stem memory. Given sampled node inputs, as the
offset between the quantized blocks gets preciser,
CMLAN can generate more distinct linear interpo-
lated results at the untrained intermediated nodes.

The size of the quantizing block, X plays a key
role in the storage and retrieval of the learned data
in a distribute manner. In fact, CMLAN learns the
unmodeled system behavior by slicing the desired
fuction, which is usually nonlinear, into many pre-
cise linear segments. The size of K should be dete-
rmined considering the slope of the function to be
trained. Generally when the slope of the function
is steep over the mapped input space, the value of
K should decrease and vice versa. With the unpro-
per size of K, the learning performance of CMLAN
can not be improved by increasing the training nu-

mber or by varying the learning gain. With the
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Nnumber of different inputs, ideally the system
can do its best with the N number of memory. The
reduction of the memory size, however, is one of
the important merits in applying neuro nets while
maintaining certain fault-tolerance. Learning gain
has a function of the moderate adjustment toward
the minimum of the LMS(Least Mean Square) er-
ror.

The way of learning is also quite critial to its pe-
rformance. The designer should decide which lear-
ning should fit to their application best among
REC, SEC, and hybrid. The REC learning is good
for handling a quite large input space and good for
off-line generation of the desired system behavior.
While the SEC learning is good for the type of app-
lictions such that on-line learning is required while
the system is in action with on-line error measure-
ment.

CMLAN can be implemented as a reference fun-
ction generator or an adaptive control function ge-
nerator. Considering human’s motor behavior,
many sub-CMLAN controllers can be connected
hierarchically according to the level of the object to

be controlled. The selective on-line learning can be

implemented depending on whether the situation
of the task environment is normal or abnormal.

When applying CMLAN to learn the unmodeled

system behavior, the following simple design steps
are suggested from the analyzed characteristics of
the network.

Set CMLAN offset a little preciser than the
anticipated.

(2) Speify sampled node inputs.

(3) Set up regular CMLAN input variable space
using the proposed uniform quantizing
scheme.

{4) Size of K is selected 1/3~2/5 of CMLAN in-
put variable range.

Learning gain is selected as 0.4 to 0.8 for the
regular REC and SEC training.

(6) Number of learning epoch for SEC is deter-
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mined via on-line checking of the system im-
provement at every epoch. In case of REC,
checking of the systems improvement is sug-
gested at every 10 times number of the sam-
pled node inputs.

(@) If the learned performance is not good, re-
duce K by half and increse G by about 0.05~
0.1 and go to step (4] and repeat.

Stop

4. CONCLUSION

The interrelation of control parameters specially
for the quantizing value K and the learning gain G
was investigated by analyzing trained results of the
various model functions with basic learning algori-
thms. A general step following design guide was
set up from the characteristic of the CMLAN anal-
yzed theoretically and experimentally.

The CMLAN sytem controller can be extende-
ded to contol the integrated system behavior emp-
loying several sub-CMLANs of different function
generator and controller connected each other hie-
rarchically in a closed loop. Research and applica-
tion of this concept for the task of the sensor integ-
rated robot or system control is widely open.

The development of the nonlinear CMLAN meta
connected netwofk for a function genérator and a
decision controller is suggested for further resea-
rch to overcome limitations posed by the linearity
of the CMLAN network.

5. REFERENCES

. Albus, J.S. Sept, 1975. A New Approach to Ma-

nipulator Control : The Cerebellar Model Ar-
ticulation Controller(CMAC). Journal of Dyna-
mic Systems, Measurement, and Control, Tran.
of the ASME, Vol. 97, No. 3 ! 220-227.

. Albus, J.S. Sept, 1975. Data Storage in the Ce-

rebella Model Articulation Controller(CMAC).
Journal of Dynamic Systems, Measurement,
and Control, Tran. of the ASME, Vol. 97, No.
31 228-233.

. Albus, J.S. 1979. Mechanisms of Planning and

Problem Solving in The Brain, Mathematical
Biosciences - 247-291.

. Anderson, J.A. and E. Rosenfeld. 1988. Neuro-

computing . Foundations of research. MIT
Press, Cambridge, MA.

. DARPA Neural Network Study, 1987. AFCEA

Int. Press, pp. 123-133, 445-450.

. Rumelhart, D.E. and J.L. McClelland. 1987. Pa-

rallel Distributed Processing - Explorations in
the Microstructure of Cognition. Vol. 1 and 2,
Cambridge, MA ° MIT Press/

L3 WEY) 1090, A RY AHZ AAY

972 gEAEs ATFM -4 L e
1YF AL-, FFELIALAA Vol 15
No. 3 ¢ 186-198.

LB E WEY) 1990, A Rd M3 NG

o 72 2 grls ATUD -5 A2l
A9 g8&—, @F5H71A 3R Vol, 15 No.
37 199-206.





