A NOTE ON IDEALS WHICH ARE MAXIMAL AMONG NONVALUATION IDEALS

BYUNG GYUN KANG*

In this paper R will be an integral domain. A Noetherian ring with unique maximal ideal is called a local ring. An ideal of R is called a valuation ideal if it is the contraction of an ideal of some valuation overring of R. It is known that every primary ideal of a Noetherian domain R is a valuation ideal if and only if R is a Dedekind domain. From this fact we come to be interested in the ideals which are maximal among nonvaluation ideals. One might guess that such an ideal has to be a primary ideal, but this is false. We will show that such an ideal I in a Noetherian domain R is a primary ideal if and only if its radical \sqrt{I} is a maximal ideal. In the case that R is a two dimensional regular local ring, we will show that I is a primary ideal. Note that \sqrt{I} is not always a prime ideal. But it will turn out that \sqrt{I} is a prime ideal if R is a local domain. This will be used to prove that in a two dimensional regular local ring, I is always a primary ideal. For undefined terms and general information, the reader is referred to [2].

Lemma 1. Let R be a commutative ring such that the set $Z(R)$ of zero divisors is a union of finite number of prime ideals. Then any regular ideal of R is generated by regular elements.

Proof. This follows from [1, Lemma B]

Lemma 2. Let R be a local domain and I an ideal of R. If I is maximal among nonvaluation ideals of R, then \sqrt{I} is a prime ideal.

Proof. Let M be the maximal ideal of R. If $\sqrt{I} = M$, then there is nothing to prove. So let us assume that $\sqrt{I} \subseteq M$. Choose $a \in M \setminus \sqrt{I}$.
Then for each \(k \geq 1 \), \(I \subseteq I+(a^k) \). Now by passing to \(R/I \) and using Krull’s intersection theorem \([3, \text{ Theorem 142}]\), we deduce that \(I = \cap_{k=1}^{\infty} (I+(a^k)) \). Put \(I+(a^k) = I_k \). Now \(I = \cap_{k=1}^{\infty} I_k, I_1 \supseteq I_2 \supseteq \ldots \supseteq I_k \supseteq I_{k+1} \ldots \), and each \(I_k \) is a valuation ideal. To prove that \(\sqrt{I} \) is a prime ideal, suppose that \(xy \in I^2 \) for \(x, y \in R \). Then \(xy \in (I_k)^2 \) for each \(k \). So either \(x \) or \(y \) is in \(I_k \) since \(I_k \) is a valuation ideal \([2, \text{ Lemma 24.4}]\). Hence at least one of \(x \) and \(y \) is contained in infinitely many \(I_k \)'s, which implies that either \(x \) or \(y \) is contained in \(\cap_{k=1}^{\infty} I_k = I \). Now suppose \(xy \in \sqrt{I} \) for \(x, y \in R \). Then \((xy)^n \in I \) for some \(n > 0 \). So \(x^{2n}y^{2n} = (xy)^{2n} \in I^2 \). From the previous argument, either \(x^{2n} \) or \(y^{2n} \) is contained in \(I \). From this, we conclude that \(x \) or \(y \in \sqrt{I} \) and hence \(\sqrt{I} \) is a prime ideal.

Lemma 3. Let \(R \) be an integral domain and \(I \) an ideal which is maximal among nonvaluation ideals. If \(P \) is a prime ideal containing \(I \), then \(R/P \) is a valuation ring.

Proof. Let \(\bar{x}, \bar{y} \) be two nonzero elements of \(\bar{R} = R/P \), so that \(x \notin P \), \(y \notin P \). Since \(I \subseteq P \subseteq P+(xy) \), we have that \(P+(xy) \) is a valuation ideal of \(R \). For some valuation overring \(V \) of \(R \), \((xy)+P = ((xy)+P) \ V \cap R \). Then either

\[
[x^2V \subseteq ((xy)+P) \ V \text{ or } y^2V \subseteq ((xy)+P) \ V]
\]

or

\[
[x^2V \supseteq ((xy)+P) \ V \text{ and } y^2V \supseteq ((xy)+P) \ V]
\]

Case I. \(x^2V \subseteq ((xy)+P) \ V \Rightarrow x^2 \in ((xy)+P) \ V \cap R = (xy)+P \Rightarrow x^2 = rxy+p \) for \(r \in R \) and \(p \in P \Rightarrow x(x-ry) \in P \Rightarrow x-ry \in P \) since \(x \notin P \Rightarrow x \in (y)+P \Rightarrow (x)+P \subseteq (y)+P \Rightarrow (\bar{x}) \subseteq (\bar{y}) \).

Case II. \(((xy)+P) \ V \subseteq x^2V \text{ and } ((xy)+P) \ V \subseteq y^2V \Rightarrow xy = x^2v, xy = y^2v' \) for some \(v, v' \in V \Rightarrow x^2y^2 = x^2y^2v' \Rightarrow vv' = 1 \Rightarrow x^2 = xyv' \) from \(xy = x^2v \Rightarrow x^2 \in ((xy)+P) \ V \cap R \). This reduces to case I. Thus either \((\bar{x}) \subseteq (\bar{y}) \) or \((\bar{y}) \subseteq (\bar{x}) \). Hence \(R/P \) is a valuation ring.

Corollary 4. Let \(R \) be a local domain and \(I \) an ideal maximal among nonvaluation ideals. Then \(R/\sqrt{I} \) is a principal ideal domain.
A note on ideals which are maximal among nonvaluation ideals

Proof. This follows from Lemma 2 and Lemma 3.

Let R be a Noetherian domain and I an ideal maximal among nonvaluation ideals. Let D be a Dedekind domain which is not a DVR. The set of nonvaluation ideals of D is not empty. Let us choose an ideal I which is maximal among nonvaluation ideals. If I is a primary, then $I = I_P \cap R$, where $P = \sqrt{I}$, and hence I is a valuation ideal since D_P is a DVR. This contradicts our choice of I. So I need not be a primary ideal. In the next theorem, we give a necessary and sufficient condition for I to be a primary ideal.

Theorem 5. Let D be a Noetherian domain and I an ideal maximal among nonvaluation ideals. Then I is a primary ideal if and only if \sqrt{I} is a maximal ideal.

Proof. (\Rightarrow) Suppose that I is a primary ideal. Let $\sqrt{I} = P$. We want to show that P is a maximal ideal. If not, there exists a maximal ideal M such that $P \subset M$. In $R = D/I, Z(R) = P/I$. Let x and y be regular elements of R, so $x, y, xy \notin P$. Then $I + (xy) \supseteq I$ so $I + (xy)$ is a valuation ideal of D. Then for some valuation overring V of R, $I + (xy) = (I + (xy))V \cap D$. As in the proof of Lemma 3, we deduce that either $x^2V \subseteq ((xy) + I)V$ or $y^2V \subseteq ((xy) + I)V$. We may assume that $x^2V \subseteq ((xy) + I)V$. We can find $r \in R$ such that $x(x-ry) \in I$ as we did in the case I of the proof of Lemma 3. Since I is a primary ideal and $x \notin P = \sqrt{I}$, so $(x) \subseteq (y)$. Thus in D/I, the regular principal ideals are totally ordered. It is easy to see that every element of $(M \setminus P)/I$ is a regular element of D/I. So M/I is a regular ideal and it is generated by regular elements by Lemma 1. Since D/I is Noetherian, M/I is finitely generated and hence M/I is a principal ideal. By the Krull's principal ideal theorem, M/I is a minimal prime ideal of D/I. So $M/I = P/I$ and $M = P$, which contradicts our assumption that $P \subset M$. Therefore we conclude that P is a maximal ideal.

(\Leftarrow) is obvious.

Let $P_1 \subseteq P_2 \subseteq \cdots \subseteq P_n$ be a chain of prime ideals of an integral domain R. Then there always exists a valuation overring V of R such that $P_iV \cap D = P_i$ for each $i = 1, \cdots, n$. This fact is crucial in proving
Theorem 6. Let \((R, M)\) be a two dimensional regular local domain and \(I\) an ideal maximal among nonvaluation ideals of \(R\). Then \(\sqrt{I}\) is the maximal ideal of \(R\).

Proof. If \(P = \sqrt{I}\) is not the maximal ideal, then \(P\) is a minimal prime ideal of \(R\). Since \(R\) is a UFD, there exists an \(a \in R\) such that \(P = (a)\). By corollary 4, \(R/P\) is a PID. So \(M = P + (b)\) for some \(b \in R\) and \(M = (a, b)\). It is easy to see that \(A \equiv \{J \mid J\) is an ideal of \(R\) \((a^2) \subseteq J \subseteq (a)\} = \{(a^2, ab^k)\}_{k=0}^{\infty}\). We claim that \(I \subseteq A\). We have to show that \(P^2 \subseteq I\). For otherwise, \(P^2 \not\subseteq I\) and \(P^2 \not\subseteq I + (b^n)\) for some \(n\) by Krull's intersection theorem. Let \(J = (I + (b^n)) \cap P\). Then \(Pb^n \subseteq J\). Since \(I \subseteq J \subseteq P\), we have that \(\sqrt{I} \subseteq \sqrt{J} \subseteq P\). Thus \(\sqrt{J} \subseteq M\). Choose \(z \in M \setminus \sqrt{J}\). Then following the same argument as in the proof of Lemma 2, we can show that \(J = \bigcap_{k=1}^{\infty} (J + (z^k))\). Put \(J + (z^k) = J_k\). Then each \(J_k\) is a valuation ideal since \(J_k\) properly contains \(I\). Now let \(x = a, y = b^n\). Now \(xy \in J\), which implies that \(xy \in J_k\) for each \(k\). For each \(k\), either \(x^2\) or \(y^2\) belongs to \(J_k\) since \(J_k\) is a valuation ideal \([2,\text{ Lemma }24,4]\), and hence either \(x^2\) or \(y^2\) belongs to infinitely many \(J_k\). So \(x^2 \in J = \bigcap_{k=1}^{\infty} J_k\) or \(y^2 \in J\), i.e., \(a^2 \in J\) or \(b^{2n} \in J\). This contradicts that \(0 \not\subseteq I\) and \(b \not\in P\). Thus \(a^2 \not\in I\). Now \(I \subseteq A\), so that \(I = (a^2, ab^n)\) for some \(n \geq 0\). We can choose a valuation domain \(V\) such that \(PV \cap R = P\) and \(MV \cap R = M\). Obviously \(IV \cap R \subseteq A\), so \(IV \cap R = (a^2, ab^n)\) for some \(k\). But \(k \leq n\) since \(I \subseteq IV \cap R\). We will show that \(k = n\), so that \(I = IV \cap R\). Suppose \(k < n\). Then \(ab^k \in IV = (a^2, ab^n) V \Rightarrow b^k \in (a, b^n) V \Rightarrow b^k (1 - b^{n-k} v) \in a V = V \Rightarrow b^k \in a V \) since \(1 - b^{n-k} v (n-k > 0)\) is a unit of \(V\) (note that \(b\) is a nonunit of \(V\) since \(b \in M\) and \(MV \neq V\)) \Rightarrow b^k \in a V \cap D = P \Rightarrow b \in P,\) which contradicts that \(P \neq M\). Thus \(k = n\), so \(I = IV \cap R\) is a valuation ideal. But this contradicts that \(I\) is not a valuation ideal. Therefore \(\sqrt{I}\) is the maximal ideal of \(R\).
A note on ideals which are maximal among nonvaluation ideals

References

Pohang Institute of Science and Technology
Pohang 790-330, Korea