INVARIANT SUBMEANS AND SEMIGROUPS OF NONEXPANSIVE MAPPINGS ON UNIFORMLY
CONVEX BANACH SPACES

Jong Yeoul Park* and Jae Ug Jeong

1. Introduction

Let S be a semitopological semigroup i.e., S is a semigroup with Hausdorff topology such that for each $s \in S$, the mappings $t \mapsto ts$ and $t \mapsto st$ from S into S are continuous. Let E be a uniformly convex Banach space and $\mathcal{V} = \{T_t \; ; \; t \in S\}$ be a continuous representation of S as nonexpansive mappings on a closed convex subset C of E into C, i.e., $T_{ts}x = T_tT_sx$, $t, s \in S$, $x \in C$, and the mapping $(t, x) \mapsto T tx$ from $S \times C$ into C is continuous when $S \times C$ has the product topology. Let $\text{AP}(S)$ be all continuous almost periodic functions on S. i.e., $f \in C(S)$ such that $\{rsf ; s \in S\}$ is relatively compact in the norm topology.

Lau[1], in 1985, proved that if the space of almost periodic functions on S has a left invariant mean, C is a closed convex subset of a Hilbert space H, and there exist $x \in C$ with relatively compact orbit, then C contains a common fixed point for $\mathcal{V} = \{T_t \; ; \; t \in S\}$.

In this paper we prove that if $\text{AP}(S)$ has an invariant submean, $\mathcal{V} = \{T_t \; ; \; s \in S\}$ is a continuous representation of S as nonexpansive mappings on a closed convex subset C of an uniformly convex, uniformly smooth Banach space and C contains an element of relatively compact orbit, then C contains a common fixed point for S.

2. Preliminaries

Let S be a semitopological semigroup and $B(S)$ be the Banach space of all bounded real valued functions on S with supremum norm. Let D be a subspace of $B(S)$ containing constants. A real valued function
Jong Yeoul Park and Jae Ug Jeong

\(\mu \) on \(D \) is called **submean** on \(D \) if the following conditions are satisfied:

1) \(\mu(f+g) \leq \mu(f) + \mu(g) \) for every \(f, g \in D \).
2) \(\mu(\alpha f) = \alpha \mu(f) \) for every \(f \in D \) and \(\alpha \geq 0 \).
3) For \(f, g \in X \), \(f \leq g \) implies \(\mu(f) \leq \mu(g) \).
4) \(\mu(c) = c \) for every constant \(c \).

Let \(\mu \) be a submean on \(D \) and \(f \in D \). Then, according to times and circumstances, we use \(\mu_t(f(t)) \) instead of \(\mu(f) \).

For \(s \in S \) and \(f \in B(S) \), we define \(l_s f(t) = f(st) \) and \(r_s f(t) = f(ts) \) for all \(t \in S \). Let \(D \) be a subspace of \(B(S) \) containing constants which is \(l_s \)-invariant, i.e., \(l_s(D) \subset D \) for each \(s \in S \). Then a submean \(\mu \) on \(D \) is said to be left invariant if \(\mu(f) = \mu(l_s f) \) for all \(s \in S \) and \(f \in D \). Similarly, we can define a right invariant submean on a \(r_s \)-invariant subspace of \(B(S) \) containing constants. A left and right invariant submean is called an invariant submean.

Let \(E \) be a Banach space, and let \(E^* \) be its dual. The value of \(f \in E^* \) at \(x \in E \) will be denoted by \(\langle x, f \rangle \). With each \(x \in E \), we associate the set

\[
J(x) = \{ f \in E^*, \langle x, f \rangle = \| x \|^2 = \| f \|^2 \}.
\]

Using the Hahn–Banach theorem, it is immediately clear that \(J(x) \neq \emptyset \) for each \(x \in E \). The multi-valued operator \(J : E \to E^* \) is called the **duality mapping**. As well known ([2, p.130]), if \(E^* \) is uniformly convex (or equivalently, \(E \) is uniformly smooth), \(J \) is single-valued, and \(J \) is uniformly continuous on each bounded subset of \(E \) when \(E \) has the strong topology while \(E^* \) has the weak* topology.

Let \(E \) be a uniformly smooth Banach space with duality mapping \(J : E \to E^* \). A map \(T \) with domain \(D(T) \) is said to be **accretive** if, for any \(x, y \in E \) and all \(\lambda > 0 \),

\[
\| \lambda x + Tx - (\lambda y + Ty) \| \geq \lambda \| x - y \|.
\]

Equivalently, \(T \) is accretive if and only if

\[
(Tx - Ty, J(x-y)) \geq 0
\]

for all \(x, y \in D(T) \) (see [5, p.245]). The range of \(\lambda I + T \), \(R(\lambda I + T) \), is known to be all of either for all \(\lambda > 0 \), or no \(\lambda > 0 \) (see [4]); in the first case, \(T \) is called **\(m \)-accretive**. In this case, the resolvent \(J_{\lambda} = (I + \lambda T)^{-1} \) is a nonexpansive mapping defined on \(E \) for each positive \(\lambda \).

Let \(\mathcal{F} \) be a family of \(m \)-accretive operators with common domain
Invariant submeans and semigroups of nonexpansive mappings

Let $S(\mathcal{F})$ be the semigroup of nonexpansive mappings on E generated by $\{J_f^T; T \in \mathcal{F}\}$. Equip $S(\mathcal{F})$ with the strong operator topology. Then $S(\mathcal{F})$ is a topological semigroup i.e., the multiplicative on $S(\mathcal{F})$ is jointly continuous.

3. Lemmas

Lemma 3.1. Let S be a semitopological semigroup, let D be a subspace of $B(S)$ containing constants and let μ be a submean on D. Let $\{x_t; t \in S\}$ be a bounded subset of a Banach space E and let C be a closed convex subset of E. Suppose that for each $x \in C$, the real-valued function G on C by

$$G(x) = \mu_t||x_t - x||^2.$$

Then the real-valued function G on C is continuous and convex.

Proof. Let $x_n \to x$, and $M = \sup \{||x_t - x_n|| + ||x_t - x||; n=1,2,\ldots, \text{ and } t \in S\}$. Then, since

$$||x_t - x_n||^2 - ||x_t - x||^2 = (||x_t - x_n|| + ||x_t - x||)$$

$$- (||x_t - x_n|| - ||x_t - x||) \leq M||x_t - x_n|| - ||x_t - x|| \leq M||x_n - x||$$

for every $n=1,2,\ldots$ and $t \in S$, we have

$$\mu_t||x_t - x_n||^2 \leq \mu_t||x_t - x||^2 + M||x_n - x||.$$

Similarly, we have

$$\mu_t||x_t - x||^2 \leq \mu_t||x_t - x_n||^2 + M||x_n - x||.$$

So, we have $|G(x_n) - G(x)| \leq M||x_n - x||$. This implies that G is continuous on C.

Let α and β be nonnegative numbers with $\alpha + \beta = 1$ and $x, y \in C$. Then, since

$$||x_t - (\alpha x + \beta y)||^2 \leq \alpha||x_t - x||^2 + \beta||x_t - y||^2$$

we have $G(\alpha x + \beta y) \leq \alpha G(x) + \beta G(y)$. This implies that G is convex on C.

Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly smooth Banach space E, let S be a semitopological semigroup, and let $\{x_t; t \in S\}$ be a bounded subset of E. Let D be a subspace of $B(S)$ such that D contains constants and for any $x \in C$ and $u \in E$, functions h
and g defined by $h(t) = \|x_t - z\|^2$, $g(t) = \langle u, J(x_t - z) \rangle$ for all $t \in S$ are in D such that $\lim_{t \to \infty} \|x_t - z\|^2$ exists for all $z \in C$. Let μ be a submean on D satisfying the following condition: if $\lim_{t \to \infty} x_t = \alpha$ and $\lim_{t \to \infty} y_t = \beta$ then $\mu_t(x_t \pm y_t) = \mu_t(x_t) \pm \mu_t(y_t)$. Let $z_0 \in C$ and $\mu_t \|x_t - z_0\|^2 = \min_{y \in C} \mu_t \|x_t - y\|^2$.

Then $\mu_t(z - z_0, J(x_t - z_0)) \leq 0$ for all $z \in C$.

Proof. For z in C and $0 \leq \lambda \leq 1$, we have

$$\|x_t - z_0\|^2 = \|x_t - \lambda z_0 - (1 - \lambda) z + (1 - \lambda) (z_0 - z)\|^2$$

$$\geq \|x_t - \lambda z - (1 - \lambda) x\|^2$$

$$+ 2(1 - \lambda) \langle z - z_0, J(x_t - \lambda z_0 - (1 - \lambda) z) \rangle$$

since $J(x)$ is the subdifferential of the convex function $\frac{1}{2} \|x\|^2$ ([2, p. 97]). Since E is uniformly smooth, the duality map is uniformly continuous on bounded subset of E from the strong topology of E to the weak* topology of E^*. Therefore

$$\langle z - z_0, J(x_t - \lambda z_0 - (1 - \lambda) z) - J(x_t - z_0) \rangle \leq \epsilon$$

if λ is closed enough to 1. Consequently, we have

$$\langle z - z_0, J(x_t - z_0) \rangle$$

$$= \langle \epsilon + \langle z - z_0, J(x_t - \lambda z_0 - (1 - \lambda) z) \rangle \rangle$$

$$\leq \epsilon + \frac{1}{2(1 - \lambda)} \left\{ \|x_t - z_0\|^2 - \|x_t - \lambda z_0 - (1 - \lambda) z\|^2 \right\}.$$

Hence, by hypothesis,

$$\mu_t(z - z_0, J(x_t - z_0)) \leq \epsilon + \frac{1}{2(1 - \lambda)} \left\{ \mu_t \|x_t - z_0\|^2 - \mu_t \|x_t - \lambda z_0 - (1 - \lambda) z\|^2 \right\}$$

$$\leq \epsilon$$

since $\lim_{t \to \infty} \|x_t - z_0\|^2$ and $\lim_{t \to \infty} \|x_t - \lambda z_0 - (1 - \lambda) z\|^2$ exists.

Lemma 3.3. Let C be a closed convex subset of a uniformly convex and uniformly smooth Banach space E, let S be a semitopological semigroup, and let $\{x_t : t \in S\}$ be a bounded set of E. Let D be a subspace of $B(S)$ such that D contains constants and for any $z \in C$ and $u \in E$, functions h and g defined by $h(t) = \|x_t - z\|^2$ and $f(z) = \langle u, J(x_t - z) \rangle$ for all $t \in S$ are in D such that $\lim_{t \to \infty} \|x_t - z\|^2$ exists for all $z \in C$. Let μ be a submean on D satisfying the following condition: if $\lim_{t \to \infty} x_t = \alpha$
Invariant submeans and semigroups of nonexpansive mappings

and \(\lim_{t \to \infty} y_t = \beta \) then \(\mu_t(x_t \pm y_t) = \mu_t(x_t) \pm \mu_t(y_t) \). Then, the set

\[
M = \{ u \in C ; \mu_t \| x_t - u \|^2 = \min_{z \in C} \mu_t \| x_t - z \|^2 \}
\]

consists of one point.

Proof. Let \(g(z) = \mu_t \| x_t - z \|^2 \) for every \(z \in C \) and \(\gamma = \inf \{ g(z) ; z \in C \} \). Then, since the function \(g \) on \(C \) is convex, continuous and \(g(z) \to \infty \) as \(\| z \| \to \infty \) from \([6, p.79]\), there exists \(u \in C \) with \(g(u) = \gamma \). Therefore \(M \) is nonempty. From lemma 3.2 and \(u \in M \),

\[
\mu_t \langle z - u, J(x_t - u) \rangle \leq 0
\]

for all \(z \in C \). We show that \(M \) consists of one point. Let \(u, v \in M \) and suppose \(u \neq v \). Then by \([3, Theorem 1]\), there exists a positive number \(k \) such that

\[
\langle x_t - u - (x_t - v), J(x_t - u) - J(x_t - v) \rangle \geq k
\]

for all \(t \in S \). Therefore

\[
\mu_t \langle v - u, J(x_t - u) - J(x_t - v) \rangle \geq k > 0.
\]

On the other hand, since \(u, v \in M \), we have \(\mu_t \langle v - u, J(x_t - u) \rangle < 0 \) and \(\mu_t \langle u - v, J(x_t - v) \rangle < 0 \). Since

\[
\begin{align*}
\langle v - u, J(x_t - u) - J(x_t - v) \rangle \\
= \langle v - u, J(x_t - u) \rangle + \langle u - v, J(x_t - v) \rangle,
\end{align*}
\]

\[
\begin{align*}
\mu_t \langle v - u, J(x_t - u) - J(x_t - v) \rangle \\
\leq \mu_t \langle v - u, J(x_t - u) \rangle + \mu_t \langle u - v, J(x_t - v) \rangle \\
< 0.
\end{align*}
\]

This is a contradiction. Therefore \(u = v \).

4. Semigroup of nonexpansive mappings with bounded orbit

Let \(S \) be a semitopological semigroup. Let \(C(S) \) be the Banach space of bounded continuous real-valued functions on \(S \). Let \(AP(S) \) denote the space of all continuous almost periodic functions on \(S \). i.e., \(f \in C(S) \) such that \(\{ rsf ; s \in S \} \) is relatively compact in the norm topology where \((rsf)(t) = f(is) \).

Theorem 4.1. Let \(S \) be a semitopological semigroup. Let \(\mathcal{G} = \{ T_s ; s \in S \} \) be a continuous representation of \(S \) as nonexpansive mappings on a closed convex subset \(C \) of a uniformly convex uniformly smooth Banach space \(E \) into \(C \). If \(AP(S) \) has an invariant submean, and \(x \in C \) with
relatively compact orbit, then there exists \(u \in C \) such that \(T_s u = u \) for all \(s \in S \).

Proof. We first prove that for any \(z \in C \) and \(y \in E \) the function \(h \) and \(g \) defined by

\[
 h(t) = \| T_t x - z \|^2 \quad \text{and} \quad g(t) = \langle y, J(T_t x - z) \rangle
\]

for all \(t \in S \) are in \(\text{AP}(S) \). It is clear that \(h \in \text{C}(S) \). Let \(h_x(t) = \| T_t x - z \|^2 \). Then \(r_z h_x(t) = h_{w}(t) \) where \(w = T_s x \). Let \(\tau : x \rightarrow h_x(t) \). If we can show that \(\tau \) is continuous when \(C(S) \) has the supnorm topology, the \(\tau(O(x)) \) is a compact subset of \(C(S) \) containing \(\{ r_z h ; s \in S \} \) where \(O(x) = \{ T_s x ; s \in S \} \). In particular, \(h \in \text{AP}(S) \). To see that \(\tau \) is continuous, let \(\{ x_n \} \) be a sequence in \(C \), \(x_n \rightarrow x \) and \(M = \sup_{t \in S} \| T_t x - z \| \) for all \(x \in C \) with relatively compact orbit, then

\[
 \| \tau(x_n) - \tau(x) \| = \sup_{t \in S} \| T_t x_n - z \|^2 - \| T_t x - z \|^2 \\
 = \sup_{t \in S} (\| T_t x_n - z \| - \| T_t x - z \|) \| T_t x_n - z \| + \| T_t x - z \|) \\
 \leq 2M \sup_{t \in S} \| T_t x_n - T_t x \| \\
 \leq 2M \| x_n - x \|
\]

by nonexpansive of \(T_t \), \(t \in S \). Hence \(\| \tau(x_n) - \tau(x) \| \rightarrow 0 \) as \(x_n \rightarrow x \). Thus we have \(h \in \text{AP}(S) \).

Similarly, let \(g_x(t) = \langle y, J(T_t x - z) \rangle \). Then \(r_z g_x(t) = g_{w}(t) \) where \(w = T_s x \). Let \(\eta : x \rightarrow g_x(t) \) and \(x_n \rightarrow x \). Then we have

\[
 \| \eta(x_n) - \eta(x) \| = \sup_{t \in S} | \langle y, J(T_t x_n - z) \rangle - \langle y, J(T_t x - z) \rangle | \\
 = \sup_{t \in S} | \langle y, J(T_t x_n - z) - J(T_t x - z) \rangle |.
\]

Since \(J \) is uniformly continuous on bounded sets when \(E \) has its strong topology while \(E^* \) has its weak* topology and

\[
 \| (T_t x_n - z) - (T_t x - z) \| = \| T_t x_n - T_t x \| \\
 \leq \| x_n - x \|.
\]

Hence \(\| \eta(x_n) - \eta(x) \| \rightarrow 0 \) as \(x_n \rightarrow x \). Thus we have \(g \in \text{AP}(S) \).

Let \(\mu \) be an invariant submean on \(\text{AP}(S) \). Then, the set

\[
 M = \{ u \in C ; \mu || T_s x - u ||^2 = \min_{s \in S} \mu || T_s x - z ||^2 \}
\]

is invariant under every \(T_s \), \(s \in S \). In fact, if \(u \in M \) then for each \(s \in S \) we have

\[
 \mu || T_s x - T_s u ||^2 = \mu || T_s x - T_s u ||^2
\]

\[30\]
Invariant submeans and semigroups of nonexpansive mappings

\[\mu_1 \| T_i T_j x - T_i u \| ^2 \leq \mu_1 \| T_i x - u \| ^2 \]

and hence \(T_i u \in M \). On the other hand, by Lemma 3.3, we know that \(M \) consists of one point. Therefore this point is a common fixed point of \(T_i, i \in S \).

Theorem 4.2. Let \(E \) be a uniformly convex uniformly smooth Banach space. Let \(\mathcal{F} \) be a family of \(m \)-accretive mappings with common domain \(D \) in \(E \). Suppose that \(AP(\mathcal{S}) \) has an invariant submean, and there exists a sequence \(\{x_n\} \) in \(D \) such that \(T(x_n) \to 0 \) for each \(T \in \mathcal{F} \), then there exists \(v \in E \) such that \(T(v) = 0 \) for all \(T \in \mathcal{F} \).

Proof. Define a function \(g : E \to \mathbb{R} \) by

\[g(z) = \mu_1 \| x_n - z \| \]

for each \(z \in E \) and \(\gamma = \inf \{ g(z) \mid z \in E \} \), where \(\mu_1 \| x_n - z \| \) denotes the value of \(\mu \) at the bounded sequence \(\{ \| x_n - z \| \} \). Then, since the function \(g \) on \(E \) is continuous, convex and \(g(z) \to \infty \) as \(\| z \| \to \infty \), it follows from [6, p. 79], there exists \(v \in E \) with \(g(v) = \gamma \). So, putting \(M = \{ v \in E \mid g(v) = \gamma \} \), \(M \) is nonempty, bounded, closed, and convex. Let \(v \in M \), \(T \in \mathcal{F} \), and \(J = J_1 T = (I + T)^{-1} \). Then

\[
\mu_1 \| x_n - Jv \| = \mu_1 \| x_n - Jx_n + Jx_n - Jv \| \\
\leq \mu_1 \| x_n - Jx_n \| + \mu_1 \| x_n - v \| \\
\leq \mu_1 \| Tx_n \| + \mu_1 \| x_n - v \| \\
\leq \mu_1 \| x_n - v \|
\]

since \(Tx_n \to 0 \) by assumption. Therefore, \(M \) is invariant under \(J_1 T \) for each \(T \in \mathcal{F} \). In particular, \(M \) is invariant under the semigroup \(S \) generated by \(\{ J_1 T \mid T \in \mathcal{F} \} \). If \(AP(\mathcal{S}) \) has an invariant submean, then by Theorem 4.1, there exists \(v \in M \) with \(J_1 T(v) = v \) for all \(T \in \mathcal{F} \). i.e., \(T(v) = 0 \) for all \(T \in \mathcal{F} \).

References

3. J. Prüh, *A characterization of uniform convexity and applications to accre-

Pusan National University
Pusan 609–735, Korea
and
Dongeui University
Pusan 614–013, Korea