ON DUALITIES FOR STRONGLY DECOMPOSABLE OPERATORS

JAE CHUL RHO AND TAE-GEUN CHO

1. Notations and definitions

Throughout this note, X denotes a complex Banach space, $B(X)$ the Banach algebra of all bounded linear operators of X and X^* the dual of X. For an operator $T \in B(X)$, T^* denotes the dual operator of T. If M is a closed T-invariant subspace of X, we write $T|M$ for the restriction and T/M for the operator induced by T on the quotient space X/M. For $N \subseteq X$, let N^\perp be its annihilator in X^*, \overline{N} the closure of N. The symbol $\sigma(T)$ stands for the spectrum of T. We denote \mathcal{U} and \mathcal{F} the class of all open subsets and the closed subsets in the finite complex plane \mathbb{C} respectively. If T has the single valued extension property, we denote $X_T(F) = \{ x \in X : \sigma(x, T) \subseteq F \}$. This is a linear subspace of X but not necessarily closed even if F is closed in \mathbb{C}. The set theoretic difference between two sets A and B is denoted by $A - B$.

Definition 1.1 ([3]). Let $T \in B(X)$. A T-invariant subspace Z is said to be spectral maximal for T if for any T-invariant subspace Y such that $\sigma(T|Y) \subseteq \sigma(T|Z)$ we have that $Y \subseteq Z$.

We denote the set of all spectral maximal subspaces for T by $\text{SM}(T)$.

Definition 1.2 ([3]). An operator $T \in B(X)$ is said to be decomposable if for any finite system $\{ G_1, G_2, \ldots, G_n \}$ of open subsets of \mathbb{C} that cover $\sigma(T)$, there exist spectral maximal subspaces $\{ Y_1, Y_2, \ldots, Y_n \}$ such that $X = \sum_{i=1}^{n} Y_i$ and $\sigma(T|Y_i) \subseteq G_i$ for $i = 1, 2, \ldots, n$.

Received June 23, 1989.
Revised September 21, 1989.
This research is supported by MOE grant 1988.

— 77 —
It is known that if T is decomposable, then $\text{SM}(T) = \{X_T(F) : F \in \mathcal{F}\}$.

Definition 1.3 ([9]). The T-invariant subspace Y is called analytically invariant if for each X-valued analytic function f defined on a region V_f in \mathbb{C} such that $(\lambda - T)f(\lambda) \in Y$ for $\lambda \in V_f$, then it follows that $f(\lambda) \in Y$ for $\lambda \in V_f$.

It is known that "Spectral Maximal" implies "Analytically invariant" but the converse is false. We denote the class of all analytically invariant subspaces for T by $\text{AI}(T)$. Thus $\text{SM}(T) \subseteq \text{AI}(T)$.

Definition 1.4 ([6]). A decomposable operator is strongly decomposable if the operator $T|_Y$ is decomposable for every T-spectral maximal subspace Y.

2. **Analytical spectral resolvent (ASR)**

Definition 2.1. A map $E : \mathcal{U} \to \text{AI}(T)$ is said to be an analytic spectral resolvent of T if

(i) $E(\phi) = \{0\}$,

(ii) For any finite open cover $\{G_1, G_2, \ldots, G_n\}$ of $\sigma(T)$,

$$X = \sum_{i=1}^{n} E(G_i),$$

(iii) $\sigma(T|E(G)) \subseteq \overline{G}$ for each $G \in \mathcal{U}$.

Thus an ASR is a spectral resolvent, which is defined in [5], whose range is analytically invariant subspaces.

The ASR for T is not unique as well as the spectral resolvent, there are typical types of ASR for T.

Remark 2.2. Let T be strongly decomposable, then the map E defined by $E(G) = X_T(G)$ ($G \in \mathcal{U}$) is an ASR for T.

For, it is known that if T is decomposable then $X_T(G)$ is analytically invariant for each $G \in \mathcal{U}$. Obviously $E(\phi) = \overline{X_T(\phi)} = \{0\}$, and $\sigma(T|E(G)) = \sigma(T|X_T(G)) \subseteq \overline{\sigma(T|X_T(G))}$ ($G \in \mathcal{U}$) hold since $\overline{X_T(G)} \subseteq X_T(G)$, and both $\overline{X_T(G)}$, $X_T(G)$ are analytically invariant under T; in fact, $X_T(G)$ is spectral maximal so it is analytically invariant. For any finite open cover $\{G_1, G_2, \ldots, G_n\}$ of $\sigma(T)$,
On dualities for strongly decomposable operators

\[\sum_{i=1}^{n} E(G_i) = \sum_{i=1}^{n} X_T(G_i) \supset \sum_{i=1}^{n} X_T(G_i) = X_T(\bigcup_{i=1}^{n} G_i) = X_T(\sigma(T)) = X, \]
the second equality holds since \(T \) is strongly decomposable (see [6], p. 86, Lemma 12.7).

Remark 2.3. Let \(T \) be decomposable. The map \(E \) defined by \(E(G) = X_T(G) \) \((G \in \mathcal{U})\) is an ASR for \(T \).

Proof. Let \(\{G_i\}_{i=1}^{n} \) be any open covering of \(\sigma(T) \), it is known that
\[X = X_T(\sigma(T)) \supset \sum_{i=1}^{n} X_T(G_i), \text{ thus } X = \sum_{i=1}^{n} X_T(G_i). \]
Obviously, \(\sigma(T | X_T(G)) \subset G \) and \(X_T(\{0\}) = \emptyset \).

Theorem 2.4. If \(T \) has an ASR \(E : \mathcal{U} \rightarrow A_I(T) \), then \(T \) is decomposable.

There are three different methods of proof on this theorem. Among those we give a proof using the following theorem.

Theorem 2.5 ([10]). For an operator \(T \), the following are equivalent.

(a) \(T \) is decomposable.
(b) For every open set \(G \) in \(C \), there is a \(T \)-invariant subspace \(M \) such that \(\sigma(T | M) \subset G \) and \(\sigma(T/M) \subset C - G \).

Proof of Theorem 2.4. Since \(\sigma(T | E(G)) \subset \overline{G} \) by definition, and \(\sigma(T/E(G)) \subset C - G \) holds if \(E(G) \) is analytically invariant under \(T \) (see [5], p. 60, Theorem 10). (In fact, \(\sigma(T/E(G)) \subset \sigma(T) - G \) since \(\sigma(T/E(G)) \subset \sigma(T) \)). Hence the conclusion follows by Theorem 2.5.

Further properties for an operator \(T \) having ASR were studied in [11].

3. A duality theorem for a strongly decomposable operator

In this section, we prove the main result, that is, if \(T \) is strongly decomposable with the spectrum \(\sigma(T) \) of \(T \), under some conditions, the dual operator \(T^* \) of \(T \) is strongly decomposable.

To begin with we list here some basic results.
PROPOSITION 3.1 ([1], p.1; [9], p.231). Let \(Y \) and \(Z \) be \(T \)-invariant subspaces such that \(Y \subset Z \). Then

1. \(Y \in AI(T) \) implies \(Y \in AI(T|Z) \)
2. \(Y \in AI(T|Z), \ Z \in AI(T) \) implies \(Y \in AI(T) \)
3. \(Z \in AI(T) \) if and only if \(Z/Y \in AI(T/Y) \)
4. \((T|Z)|Y = T|Y \)
5. \((T|Z)/Y = (T/Y)|Z/Y \)

We prove the following lemma using the above proposition.

LEMMA 3.2. Let \(T \) be decomposable. For an open set \(G \) in \(\mathcal{C} \), we put \(Y(G) = X_T(G), \ Z(G) = X_T(G), \ Y(G) = Z(G)/Y(G), \ \tilde{T} = T/Y(G) \)
\(\tilde{X}(G) = X/Y(G) \) and \(\tilde{T} \) is the dual operator of \(\tilde{T} \). Then
\(\tilde{\sigma}(\tilde{T}|Y(G)) \subseteq \tilde{G}, \ \tilde{\sigma}(\tilde{T}/Y) \subseteq \mathcal{C} - \tilde{G} \)
and \(Y \) is analytically invariant under \(\tilde{T} \).

Proof. Let \(G \) be arbitrary open in \(\mathcal{C} \) but fixed, let \(Y = Y(G), \ Z = Z(G) \) and \(\tilde{Y} = \tilde{Y}(G) \). By proposition 3.1, (3), \(\tilde{Y} = Z/Y \) is analytically invariant under \(\tilde{T} = T/Y \) since both \(Y \) and \(Z \) are analytically invariant under \(T \). Since \(T \) is decomposable, \(Y = X_T(G) \) is analytically invariant under \(T \), it is also analytically invariant under \(T|Z \). Thus we have
\(\tilde{\sigma}[(T|Z)/Y] \subseteq \tilde{\sigma}(T|Z) = \tilde{\sigma}(T|X_T(G)) \subseteq \tilde{G} \);
the first inclusion follows from the fact that, in general, if \(Y \) is analytically invariant (or spectral maximal) under \(T \), then \(\tilde{\sigma}(T) = \tilde{\sigma}(T|Y) \cup \tilde{\sigma}(T/Y) \) (see [9], p.227, Proposition 1.5).

Moreover, from the equality \((T|Z)/Y = (T/Y)|(Z/Y) \), we have
\(\tilde{\sigma}(\tilde{T}|\tilde{Y}) = \tilde{\sigma}[(T|Y)|(Z/Y)] = \tilde{\sigma}(T|Z)/Y) \subseteq \tilde{G} \).
Since \(G \in \mathcal{U} \) is arbitrary, we have \(\tilde{\sigma}(\tilde{T}|\tilde{Y}(G)) \subseteq \tilde{G} \) for any \(G \in \mathcal{U} \).

Again fix \(G \). By the identification \((T/Z)|X_T(G)^\perp \cong \sigma(T|Z) \), we get
\(\tilde{\sigma}(T^*|X_T(G)^\perp) = \sigma[(T/Z)^*] = \sigma(T/Z) \).
Furthermore, since \(Y \subset Z \), we have the following unitarily equivalence relation
\((T/Y)^*|Z/Y)^\perp \cong T^*|Z^\perp \) (see [7], p.292, Lemma 5).
Therefore
\(\tilde{\sigma}((\tilde{T})^*|\tilde{Y}^\perp) = \tilde{\sigma}(T^*|Z^\perp) = \sigma[(T/Z)^*] = \sigma(T/Z) \)
\(= \sigma(T/X_T(G)) \subseteq \mathcal{C} - \tilde{G} \).
the last inclusion holds since \(Z(G) = X_T(G) = E(G) \) defines an ASR for \(T \) as we noted in Remark 2.3. In fact \(\sigma(T/X_T(G)) \subset \sigma(T) - G \) since \(\sigma(T/X_T(G)) \subset \sigma(T) \).

The arbitrariness of \(G \) implies \(\sigma[(\hat{T})^*|\hat{Y}(G)^\perp] \subset C - G \) for every \(G \in \mathcal{U} \). It follows that \(\sigma(\hat{T}/\hat{Y}) = \sigma[(\hat{T}/\hat{Y})^*] = \sigma[(\hat{T})^*|\hat{Y}(G)^\perp] \subset C - G \).

We have proved the lemma.

Now, we consider again the identification \((T/X_T(G))^* = T^*|X_T(G)^\perp \). Since \(SM(T^*) = \{X_T(C - F)^\perp : F \in \mathcal{F}\} = \{X_T(G)^\perp : G \in \mathcal{U}\} \) (see [8], p. 1057, Remark), \(T^* \) is strongly decomposable if and only if \(T^*|X_T(G)^\perp \) is decomposable for every \(G \in \mathcal{U} \). Therefore, \(T^* \) is strongly decomposable if and only if \(T/X_T(G) \) is decomposable for every \(G \in \mathcal{U} \) since, in general, \(A \in B(X) \) is decomposable if and only if \(A^* \) is.

It is known that if \(T \) is strongly decomposable then \(T/M \) is decomposable for any spectral maximal space \(M \) for \(T \). Since \(X_T(G) = X_T(G \cap \sigma(T)) \), if \(\sigma(T) \) is finite then \(T/X_T(G) \) is decomposable for any \(G \in \mathcal{U} \), whence \(T^* \) is strongly decomposable.

Thus we have the following

Proposition 3.3. Let \(T \) be strongly decomposable. If the spectrum of \(T \) is finite, then \(T^* \) is strongly decomposable.

Theorem 3.4. Let \(T \) be strongly decomposable. If the spectrum \(\sigma(T) \) of \(T \) does not contain any isolated point, the interior of \(\sigma(T) = G_0 \) is nonempty and \(X_T(G_0) = X \) then \(T^* \) is strongly decomposable.

Proof. For those open sets such that \(G \cap \sigma(G) = \emptyset \), \(X_T[G \cap \sigma(T)] = \{0\} \), whence \(T/X_T(G) = T \) is decomposable. So we may assume without loss of generality that \(G \cap \sigma(T) \neq \emptyset \). Let \(G \in \mathcal{U} \) be arbitrary but fixed, and let \(H \) be any open set in \(C \). We put \(Y = X_T(G), Z = X_T(G \cup H), \bar{Y} = Z/Y, \bar{T} = T/Y \) and let \((\bar{T})^* \) be the dual of \(\bar{T} \).

By the similar proof as that of Lemma 3.2, \(\bar{Y} \) is analytic invariant under \(\bar{T} \). Now, we prove that \((\sigma(\bar{T}|\bar{Y}) \subset \bar{H}, \sigma(\bar{T}/\bar{Y}) \subset C - H \) for any \(H \in \mathcal{U} \).

Then, by Theorem 2.5., \(\bar{T} = T/X_T(G) \) is decomposable. Arbitrariness
Jae Chul Rho and Tae-Geun Cho

of G implies that T^* is strongly decomposable.

For an open set H such that $\sigma(T) \cap H = \emptyset$,
$$\sigma(T \cap \{0\}) = \emptyset \subset H, \quad \sigma(T \cap \{0\}) = \sigma(T) \subset C - H;$$
where 0 is the zero vector in $X/\overline{X_T(G)}$, that is, $\overline{X_T(G)} = 0$. Therefore, without loss of generality, we may assume that $\sigma(T) \cap H \neq \emptyset$. Since $\sigma(T) = \sigma(T/\overline{X_T(G)}) \subset C - G$, $\sigma(T) \cap H \neq \emptyset$, so $H - G \neq \emptyset$ and $\sigma(T) \cap H \neq \emptyset$.

Case (a). $\sigma(T \cap \overline{X_T(G \cup H)}) \neq \sigma(T)$.

Since $\overline{T|Z} = T|X_T(\overline{G \cup H})$ is decomposable, we have
\[(**) \quad \sigma(\overline{T|Z}) - \sigma(T) \supset \sigma(T|Z) - \sigma(T|Y) \]
the last inclusion holds since $Y \in A(T|Z)$, so $\sigma(T|Z) \subset \sigma(T|Z)$; and since $\overline{Y} \in A(T|\overline{Y})$, $\sigma(T) \subset \sigma(T) = \sigma(T/\overline{X_T(G)}) \subset C - G$.

As we stated in Remark 2.2, $E(G) = \overline{X_T(G)}$ defines an ASR for T, $\sigma(T) \cap G \subset \sigma(T|X_T(\overline{G \cup H}) \subset \overline{G} \cap \sigma(T) \subset G \cup H \cap \sigma(T)$. Moreover since $(G \cup H) \cap \sigma(T) \neq \emptyset$, $\sigma(T)$ contains no isolated point, so $(G \cup H) \cap \sigma(T) = G \cup H \cap \sigma(T)$. Also $G \cap \sigma(T) = \overline{G} \cap \sigma(T)$.

Thus we have
$$\sigma(T|Z) - \overline{G} = \sigma(T|Z) - \overline{G} \cap \sigma(T|Z) \supset (G \cup H) \cap \sigma(T) - \overline{G} \cap \sigma(T|Z)$$
$$= [\overline{G} \cap \sigma(T)] \cup [\overline{H \cap \sigma(T)}] - \overline{G} \cap \sigma(T|Z) \neq \emptyset.$$

We claim that
$$[\sigma(T|Z) - \overline{G}]^- = \sigma(T|Z) - G.$$

Suppose $[\sigma(T|Z) - G]^- \subset \sigma(T|Z) - G$. Choose λ belong to the right but not the left, then dist. $(\lambda, [\sigma(T|Z) - \overline{G}]^-) > 0$.

While $\lambda \in [\sigma(T|Z) - G]^- - [\sigma(T|Z) - \overline{G}] = \sigma(T|Z) \cap \partial G$, where $\partial G = \overline{G} - G$, the boundary of G. But this implies $\lambda \in [\sigma(T|Z) - \overline{G}]^-$, which is a contradiction. Therefore, we get, by (**), that
$$\sigma(T|\overline{Y}) = [\sigma(T|Z) - \sigma(T|Y)]^- \subset [G \cup H \cap \sigma(T) - \overline{G} \cap \sigma(T)]^-$$
$$= [(\overline{G} \cap \sigma(T)) \cup (\overline{H \cap \sigma(T)} - \overline{G} \cap \sigma(T))]^- \subset \overline{H \cap \sigma(T)} \subset \overline{H}.$$

i.e. $\sigma(T|\overline{Y}) \subset \overline{H}$.

Case (b). $\sigma(T|X_T(G \cup H)) = \sigma(T)$.

In this case, (**) can be written by

On dualities for strongly decomposable operators

\[\sigma(T) - \bar{G} \subseteq \sigma(T) - \sigma(T|Y) \subseteq \sigma(T/Y) \subseteq \sigma(T) - G. \]

(i) If \(\sigma(T) - G = \emptyset \) then \(\sigma(\tilde{T}|\tilde{Y}) \subseteq \sigma(\tilde{T}) = \sigma(T/Y) = \emptyset. \)
Thus \(\sigma(\tilde{T}|\tilde{Y}) \subseteq \bar{H} \) for any \(H \in \mathcal{U}. \)

(ii) If \(\sigma(T) - \bar{G} \neq \emptyset \), then, by the same calculation as in (a), we have
\[\sigma(\tilde{T}|\tilde{Y}) \subseteq \sigma(T/Y) \subseteq [\sigma(T) - \sigma(T|Y)]^{-1} \subseteq [\bar{G} \cup \bar{H}] \cap \sigma(T) - \bar{G} \cap \sigma(T)^{-1} \subseteq \bar{H}. \]

(iii) Finally, if \(\sigma(T) - \bar{G} = \emptyset \) but \(\sigma(T) - G \neq \emptyset \), then
\[X = \overline{X_T(G_o) \subseteq X_T(G \cap \sigma(T))}. \]
Thus \(X/X_T(G) \) is the zero vector. Therefore, we have
\[\sigma(\tilde{T}|\tilde{Y}) = \sigma[(T/Y) | X/X_T(G)] = \emptyset \subseteq \bar{H}. \]

For the second inclusion, the proof is the same as that of Lemma 3.2; by the identification \((T/Y)^*(Z/Y)^\perp = T^*|Z^\perp \), we have
\[\sigma(\tilde{T}/\tilde{Y}) = \sigma[(\tilde{T}/\tilde{Y})^\perp] = \sigma[(\tilde{T})^*|\tilde{Y}^\perp] = \sigma(T^*|Z^\perp) = \sigma(T/Z)^\perp = \sigma(T/Z) \subseteq \mathcal{C} - (G \cup H) \subseteq \mathcal{C} - H. \]
We completes the proof.

EXAMPLE 3.5. Let \(T \) be strongly decomposable with the spectrum \(\sigma(T) = [a, b], \ a < b. \) We prove that \(T^* \) is strongly decomposable. According to the Theorem 3.4, it is enough to show that \(\overline{X_T([a, b])} \)
\[= X \text{ since } G_o = (a, b). \]

We choose a system of open sets \(G_n = \left(a - \frac{1}{n}, \ a + \frac{1}{n} \right) \cup \left(b - \frac{1}{n}, \ b + \frac{1}{n} \right) \) in \(\mathbb{R} \), \(n = 1, 2, \ldots \). Then \(\overline{G_{n+1}} \subseteq \overline{G_n} \) for \(n = 1, 2, \ldots \), whence
\[X_T(\overline{G_{n+1}}) \subseteq X_T(\overline{G_n}), \overline{G_n} \cap \sigma(T) = [a, a + \frac{1}{n}] \cup (b - \frac{1}{n}, b], \text{ and} \]
\[\bigcap_{n=1}^{\infty} [\overline{G_n} \cap \sigma(T)] = \lim_{n \to \infty} [\overline{G_n} \cap \sigma(T)] = (a, b) = \partial_{\mathbb{R}} \sigma(T). \]

In general, for any system of open sets \(\{H_i\}_{i=1}^s \) in \(\mathcal{C} \),
\[X_T(\bigcup_{i=1}^s H_i) = \bigcup_{i=1}^s X_T(H_i) \text{ holds if } T \text{ is strongly decomposable (see [6], p. 86, Lemma 12.7). Therefore, we have} \]
\[X = X_T([a, b]) \subseteq X_T([a, b] \cup G_n] = X_T([a, b]) + X_T(G_n). \]
Thus
Jae Chul Rho and Tae-Geun Cho

\[X \subset X_T[(a, b)] + \bigcap_{n=1}^{\infty} X_T[\mathbb{G}_n \cap \sigma(T)] = X_T[(a, b)] + X_T[\bigcap_{n=1}^{\infty} \mathbb{G}_n \cap \sigma(T)] = X_T[(a, b)] + X_T[(\partial_R \sigma(T)) = X_T[(a, b)] + X_T[(a, b)] + X_T\{a, b\} \]

Moreover, since two closed sets \(\{a\}, \{b\}\) are disjoint

\[X_T\{a, b\} = X_T\{a\} \oplus X_T\{b\} \]

Both \(X_T\{a\}\) and \(X_T\{b\}\) are contained in \(X_T[(a, b)]\); for, let \(\{\lambda_n\}\) be a sequence in \((a, b)\) such that \(\lambda_n \to b\) as \(n \to \infty\).

Since

\[X_T(\{\lambda_1, \lambda_2, \ldots, \lambda_n\}) \subset X_T(\{\lambda_1, \lambda_2, \ldots, \lambda_m, \lambda_{n+1}\}) \subset X_T(a, b) \]

hold for any \(n \in N\), whence

\[X_T\{b\} \subset X_T(\{\lambda_1, \lambda_2, \ldots, \lambda_m, \ldots, b\}) = \lim_{n \to \infty} X_T(\{\lambda_1, \lambda_2, \ldots, \lambda_n\}) \subset X_T[(a, b)] \]

Similarly,

\[X_T\{a\} \subset X_T[(a, b)] \]

Hence

\[X_T\{a, b\} = X_T\{a\} \oplus X_T\{b\} \subset X_T[(a, b)] \]

and

\[X = X_T[(a, b)] \]

Theorem 3.6. Let \(A = C[a, b]\) be the commutative Banach \(*\)-algebra of complex-valued continuous functions on \([a, b]\) endowed with the norm \(\|x\| = \sup_{t \in [a, b]} |x(t)| (x \in A)\) and the natural involution. The operator \(T\) of multiplication by independent variables in \(C[a, b]\) defined by \((Tx)(t) = tx(t) (t \in [a, b])\) is strongly decomposable and \(\sigma(T) = [a, b]\).

Proof. Let \(m \in C[a, b]\) be \(m(t) = t\), \(t \in [a, b]\). The multiplication operator \(T_m\) defined by \(T_m x = mx\). Since

\[(T_m x)(t) = m(t)x(t) = tx(t), \text{ so } T = T_m \]

We prove that \(T_m\) is strongly decomposable: Since \([a, b]\) is compact Hausdorff for the usual topology, the maximal ideal space of \(A = C[a, b]\) is \([a, b]\) (See [13], p. 271, Example (a)). For every closed subset \(F\) of \([a, b]\) and \(t_0 \in F\), there exists a \(x \in C[a, b]\) such that \(x = 0\) on \(F\) and \(x(t_0) = 0\) thus \(C[a, b]\) is regular. By the Gelfand–Naimark theorem, \(A\) is also semisimple, whence every multiplication operator in \(A\) is super–decomposable (See [11], p. 42, Corollary 2.4), so it is strongly decomposable (See [11], p. 36, Theorem 1.3).

The fact \(\sigma(T) = [a, b]\) is well known.

Corollary 3.7. The operator of multiplication by independent variables
On dualities for strongly decomposable operators

in \(A = C[a, b] \) and its dual are strongly decomposable.

This follows from Example 3.5 and Theorem 3.6.

For the representation of \(T_m^* \), we consider \(A = C[a, b] \) as a Banach space, let \(A^* \) be its dual. By the Riesz's representation theorem \(T_m^* \) can be represented by Riemann–Stieltjes integral

\[
(T_m^*f)(x) = f(T_mx) = \int_a^b x(t) dw(t) \quad (x \in A, \ f \in A^*),
\]

where \(w \) is a bounded variation function on \([a, b] \) and has the total variation \(\text{Var}(w) = \|f\| \).

References

Jae Chul Rho and Tae-Geun Cho

Sogang University
Seoul 121–742, Korea