GLOBAL HOLOMORPHIC SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH A PARAMETER IN A STEIN MANIFOLDS

KWANG HO SHON

1. Introduction

Let S be a pure finite dimensional Stein space, \mathbb{C}^n be the space of n complex variables z_1, z_2, \ldots, z_n, Ω be a Stein domain of the product space $\mathbb{C}^n \times S$ of \mathbb{C}^n and S. Let $\mathcal{O}_{\mathbb{C}^n}^{s}$ be the sheaf over Ω of germs of holomorphic functions of variables $z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$ and $s \in S$, m be a positive integer, $a_{i_k}^j(z, s)$ be holomorphic functions on Ω for $i = 1, 2, \ldots, n$ and $p, q = 1, 2, \ldots, m$. We define sheaf homomorphisms T_i, P_j and P of $O^m : = \mathcal{O}_{\mathbb{C}^n}^{s}$ in O^m for $i, j = 1, 2, \ldots, n$ by putting

$$T_i f = \left(\frac{\partial f_1}{\partial z_i} + \sum_{k=1}^{m} a_{1k}^i(z, s) f_k, \frac{\partial f_2}{\partial z_i} + \sum_{k=1}^{m} a_{2k}^i(z, s) f_k, \ldots, \frac{\partial f_m}{\partial z_i} + \sum_{k=1}^{m} a_{mk}^i(z, s) f_k \right),$$

$$P_j f = T_j f, \quad P_j f = T_{n-j+1}(P_{j-1} f) \quad (j = 2, 3, \ldots, n-1),$$

$$P f = P_n f$$

for $f = (f_1, f_2, \ldots, f_m) \in \mathbb{C}^m$, where we denote the column vector f by $f = (f_1, f_2, \ldots, f_m)$ in order to conserve natural resources.

L. Ehrenpreis [2] considered an application of the sheaf theory to differential equations and gave a criterion for the existence of global solutions of differential equations where the existence of local solutions are assured. J. Kajiwara [5] applied the method of Ehrenpreis to ordinary differential equations in the analytic category. I. Wakabayashi [14] gave examples of domain of holomorphy in which an equation is not globally solvable. The equation $\frac{\partial f}{\partial z_1} = g$ is such an example, because there exists a simply connected domain in \mathbb{C}^2 on which $\frac{\partial f}{\partial z_1} = g$.

Received July 6, 1989.

*This work was supported by the Korea Research Foundation (1988).
Kwang Ho Shon

has no global solution for some holomorphic functions g. H. Suzuki [12] stated a necessary and sufficient condition for the global existence of holomorphic solutions. S. I. Pinčuk [10] found sufficient conditions to solve the formulated problem and he found necessary and sufficient conditions for the solution of the problem. J. Kajiwara–T. Mori [6] obtained the necessary and sufficient condition that for any function $g \in H^0(Q, O^m)$ there is a function $f \in H^0(Q, O^m)$ satisfying the inhomogeneous equation $P_n f = g$ in case that $n=1$. M. Harita [4] obtained the condition in case that $n>1$. And J. Kajiwara–K.H. Shon [8] have obtained the equivalent relations for $H^1(Q, \text{Ker } P_n) = 0$ in case that $n=1$.

At first, we generalize the result of Kajiwara–Shon [8]. The method are based on the above [4, 8]. Nextly, we obtain the vanishing theorem of cohomology groups for domains, those are not Stein.

2. Preliminaries

Let D be a Stein domain of the product space $C \times S$, \mathcal{D} be the sheaf of germs of holomorphic functions on D and $a_{pq}(z, s)$ be holomorphic functions on D. In case that $n=1$ of Section 1, we put $T_n f = Tf$ and let $\text{Ker } T$ be the kernel of T. Let $\phi : D \to S$ be the canonical projection. For $(z, s) \in D$, let $D(z, s)$ be the connected component of $\phi^{-1}(s)$ in $C \times \{s\}$ containing (z, s), \tilde{D} be the set of all cuts $D(z, s)$ for all $(z, s) \in D$, \check{D}, be the set of all simply connected $D(z, s)$ for $(z, s) \in D$, and define the mapping $\phi : \tilde{D} \to S$ by $\phi(D(z, s)) = s \in S$.

Theorem 2.1 ([8]). If $\tilde{D} = \check{D}$, if there exists a domain E in $C \times S$ containing D such that all coefficients $a_{pq}(z, s)$ are holomorphic in E and that the space \check{E} of cuts $E(z, s), (z, s) \in E$, is a Hausdorff space and if the parameter space S is a Stein manifold, then the following properties (1), (2) and (3) are equivalent:

1. $H^1(D, \text{Ker } T) = 0$.
2. The dimension of $H^1(D, \text{Ker } T)$ is finite or countably infinite.
3. The set \tilde{D} is a Stein manifold.

Theorem 2.2 ([8]). Let D be a Stein domain of the product space $C \times S$ of C and a pure finite dimensional Stein space S. If $H^1(D, \text{Ker } T)$
Global holomorphic solutions of differential equations

\[\frac{H^0(D, \mathcal{F}_m)}{TH^0(D, \mathcal{F}_m)} = 0, \text{ then either } D(z, s) \text{ is simultaneously simply} \]

connected for any \((z, s) \in D\) or \(D(z, s)\) is simultaneously doubly connected and satisfies \(H^0(D(z, s), \text{ Ker } T) = 0\) for any \((z, s) \in D\).

In case that \(D(z, s)\) is a doubly connected domain with \(H^0(Dz, s), \text{ Ker } T) = 0\) for any \((z, s) \in D\), then \(H^1(D, \text{ Ker } T) = 0\) holds if and only if \(\breve{D}\) is a Hausdorff space.

In case that \(D(z, s)\) is a simply connected domain for any \((z, s) \in D\), if the dimension of \(H^1(D, \text{ Ker } T)\) is finite or countably infinite and if all coefficients \(a_{pq}(z, s)\) are holomorphic in a domain \(E\) of \(\mathbb{C} \times S\) containing \(D\) such that \(\breve{E}\) is a Hausdorff space, then \(\breve{D}\) is a Hausdorff space and the domain \((D, \phi)\) over \(S\) is a domain of meromorphy. Moreover, if \(S\) is a Stein manifold then \(\breve{D}\) is also a Stein manifold. Conversely, if \(\breve{D} = \breve{D}\) is a Stein space, then we have \(H^1(D, \text{ Ker } T) = 0\).

3. Global holomorphic solutions

Let \(\phi_i : Q \longrightarrow \{(z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_n, s)\}\) be the canonical projection. For \((z, s) = (z_1, z_2, \ldots, z_n, s) \in Q\), let \(\Omega_i(z, s)\) be the connected component of \(\phi_i^{-1}(x_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_n, s) \cap Q\) in \(\mathbb{C}^n \times \{s\}\) containing \((z, s) \in Q\) and \(\breve{Q}_i\) be the set of all cuts \(\Omega_i(z, s)\) for any \((z, s) \in Q\) \((i = 1, 2, \ldots, n)\). We define the mapping \(\phi_i : \breve{Q}_i \longrightarrow \{(x_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_n, s)\}\) by \(\phi_i(\Omega_i(z, s)) = (z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_n, s)\) for any \((z, s) \in Q\) and the canonical mapping \(\eta_i : Q \longrightarrow \breve{Q}_i\) by \(\eta_i(x_1, z_2, \ldots, z_n, s) = \Omega_i(z, s)\) for any \((z, s) \in Q\) \((i = 1, 2, \ldots, n)\). We define in the space \(\breve{Q}_i\) the strongest topology so that the mapping \(\eta_i\) is continuous. Then the mapping \(\phi_i\) is a local homeomorphism. We have short exact sequences of sheaves

\[0 \longrightarrow \text{ Ker } T_i \longrightarrow O^m \longrightarrow O^m \longrightarrow 0, \]

\[0 \longrightarrow \text{ Ker } P_j \longrightarrow O^m \longrightarrow O^m \longrightarrow 0 \]

and long exact sequences of cohomology groups

\[\ldots \longrightarrow H^0(Q, O^m) \longrightarrow H^0(Q, O^m) \longrightarrow H^1(Q, \text{ Ker } T_i) \]

\[\longrightarrow H^1(Q, O^m) \longrightarrow H^1(Q, O^m) \longrightarrow \ldots, \]

\[- 89 - \]
Kwang Ho Shon

\[P_j \quad \cdots \quad H^0(Q, \mathcal{O}_m) \quad \longrightarrow \quad H^1(Q, \mathcal{O}_m) \quad \longrightarrow \quad H^1(Q, \ker P_j) \quad \longrightarrow \quad H^1(Q, \mathcal{O}_m) \quad \longrightarrow \quad \cdots \]

for \(i, j = 1, 2, \ldots, n \). Since \(Q \) is a Stein domain, we have \(H^i(Q, \mathcal{O}_m) = 0 \) for \(i \geq 1 \) and

\[
\begin{align*}
H^1(Q, \ker T_i) &= H^0(Q, \mathcal{O}_m) / T_i H^0(Q, \mathcal{O}_m), \\
H^1(Q, \ker P_j) &= H^0(Q, \mathcal{O}_m) / P_j H^0(Q, \mathcal{O}_m).
\end{align*}
\]

A necessary and sufficient condition for \(H^1(Q, \ker P) = 0 \) is that every function which is locally of a form \(Pf = g \) is also globally of the form (see [2]), and a necessary and sufficient condition that for any function \(g \in H^0(Q, \mathcal{O}_m) \) there exists a function \(f \in H^0(Q, \mathcal{O}_m) \) satisfying the form \(Pf = g \) is that there holds \(H^1(Q, \ker P) = 0 \).

Let \(E_i(z, s) \) be the connected component of \(\phi_i^{-1}(z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_n, s) \cap E_i \) in \(C^n \times \{s\} \) containing \((z, s) \in E_i \) for any domain \(E_i \) in \(C^n \times S \). Hereafter, we consider the case that \(\Omega_i(z, s) \) is simply connected for each \((z, s) \in \Omega \) and \(i = 1, 2, \ldots, n \).

Lemma 3.1. Let \(\Omega_i(z, s) \) be a simply connected domain for \((z, s) \in \Omega \). If the dimension of \(H^1(Q, \ker P) \) is finite or countably infinite, then the dimensions of \(H^1(Q, \ker T_1) \) and \(H^1(Q, \ker P_{n-1}) \) are finite or countably infinite, respectively.

Proof. Since the dimension of \(H^1(Q, \ker P) \) is finite or countably infinite, we have \(\dim H^1(Q, \ker P) < +\infty \) by Y. T. Siu [11, Theorem 4] and then \(H^1(Q, \ker P) = 0 \) by Theorem 2.1. Therefore, we have \(H^0(Q, \mathcal{O}_m) = PH^0(Q, \mathcal{O}_m) \). Then there exists a function \(f \in H^0(Q, \mathcal{O}_m) \) such that \(Pf = g \) for any function \(g \in H^0(Q, \mathcal{O}_m) \). Letting \(f^1 = P_{n-1} f \), then we have \(T_1 f^1 = P_n f = g \). Hence we have \(H^1(Q, \ker T_1) = 0 \), that is, the dimension of \(H^1(Q, \ker T_1) \) is finite or countably infinite. For any function \(g \in H^0(Q, \mathcal{O}_m) \), we have \(T_1 g \in H^0(Q, \mathcal{O}_m) \). Hence there exists a function \(h \in H^0(Q, \mathcal{O}_m) \) such that \(T_1 g = Ph = T_1 (P_{n-1} h) \) for any \(g \in H^0(Q, \mathcal{O}_m) \). Thus we have \(T_1 (P_{n-1} f - g) = 0 \), and then \(P_{n-1} f = g \) for any function \(g \in H^0(Q, \mathcal{O}_m) \). So we have proved that \(H^1(Q, \ker P_{n-1}) = 0 \).

Lemma 3.2. Let \(\Omega_i(z, s) \) be simply connected domains for all \(1 \leq i \leq n \) and \((z, s) \in \Omega \). If the dimension of \(H^1(Q, \ker P) \) is finite or countably infinite, if there exists a domain \(E_i \) in \(C^n \times S \) containing \(\Omega \) for each \(i = 1, 2, \ldots, n \) and \(\Omega_i(z, s) \) is simply connected, then

\[
\begin{align*}
H^1(Q, \ker P) &= 0.
\end{align*}
\]
Global holomorphic solutions of differential equations

1, 2, ⋯, n such that all coefficients \(a_{im}(z, s) \) are holomorphic in \(E_i \) and if the space \(\mathcal{E}_i \) of cuts \(E_i(z, s), (z, s) \in E_i \), is a Hausdorff space for each \(i = 1, 2, \cdots, n \), then the dimension of \(H^1(\Omega, \text{Ker } T_i) \) is finite or countably infinite, \(\mathcal{Q}_i \) is a Hausdorff space and the domain \((\mathcal{Q}_i, \phi_i)\) over the Stein space \(S \) is a domain of meromorphy for each \(i = 1, 2, \cdots, n \).

Proof. For \(i = 1 \), we have the result by Lemma 3.1 and Theorem 2.2. Suppose that the dimension of \(H^1(\Omega, \text{Ker } P_k) \) is finite or countably infinite for \(k < n \). By Lemma 3.1, we have the dimension of \(H^1(\Omega, \text{Ker } P_{n-k}) \) is finite or countably infinite and then \(H^0(\Omega, O^m) = P_{n-k}H^0(\Omega, O^m) \). Since \(T_{k+1}(P_{n-k-1}f) = P_{n-k}f \) for any \(f \in H^0(\Omega, O^m) \), we have \(H^1(\Omega, \text{Ker } T_{k+1}) = 0 \). That is, the dimension of \(H^1(\Omega, \text{Ker } T_{k+1}) \) is finite or countably infinite. And the remainder statements are desired by Theorem 2.2.

Theorem 3.3. Let \(\Omega \) be a Stein domain of \(C^n \times S \) and \(\Omega_i(z, s) \) be simply connected domains for \((z, s) \in \Omega \) and \(1 \leq i \leq n \). If the dimension of \(H^1(\Omega, \text{Ker } P) \) is finite or countably infinite, if there exists a domain \(E_i \) in \(C^n \times S \) containing \(\Omega \) for each \(i = 1, 2, \cdots, n \) such that all coefficients \(a_{im}(z, s) \) are holomorphic in \(E_i \) and if the space \(\mathcal{E}_i \) of cuts \(E_i(z, s), (z, s) \in E_i \), is a Hausdorff space for each \(i = 1, 2, \cdots, n \), then the dimension of \(H^1(\Omega, \text{Ker } T_i) \) is finite or countably infinite, \(\mathcal{Q}_i \) is a Hausdorff space and the domain \((\mathcal{Q}_i, \phi_i)\) over the Stein space \(S \) is a domain of meromorphy for each \(i = 1, 2, \cdots, n \). Conversely, if the simply connected domain \(\Omega_i(z, s) \) is a Stein space for each \(i = 1, 2, \cdots, n \), then \(H^1(\Omega, \text{Ker } P) = 0 \).

Proof. By Theorem 2.2 and Lemma 3.1 and 3.2, we have the theorem.

K. Oka [9] proved that every domain over \(C^n \) analytically convex in the sense of Hartogs is a domain of holomorphy. Therefore a domain of meromorphy over \(C^n \) coincides with a domain of holomorphy over \(C^n \). J. Kajiwara–E. Sakai [7] proved that the envelope of meromorphy of a domain over a Stein manifold \(S \) with respect to a family of meromorphic function on the domain is \(p \)-convex in the sense of F. Docquier–H. Grauert [1] and, therefore, is a Stein manifold. Especially, a domain of meromorphy over \(S \) coincides with a domain
of holomorphy over S.

Lemma 3.4. Under the assumption of Theorem 3.3, if S is a Stein manifold, then \mathcal{O}_i are Stein manifolds for all $i=1, 2, \cdots, n$.

Proof. For each $i=1, 2, \cdots, n$, since the unramified domain (\mathcal{O}_i, ϕ_i) over the Stein manifold S is a domain of meromorphy by Theorem 3.3, it is pseudoconvex by Kajiwara–Sakai [7]. Thus \mathcal{O}_i are Stein manifolds for all $i=1, 2, \cdots, n$ by Docquier–Grauert [1].

In case that $U_1 \subset U_2 \subset \cdots$ be a sequence of open Stein subsets in X and $U=\bigcup_{j=1}^{\infty} U_j$, if X is a Stein manifold, it is known that U is Stein. And if X is a Stein space, it is not known whether U should be Stein. J.E. Fornaess [3] has given an example of a sequence of increasing Stein subsets in a manifold whose union is not Stein. If U_1 and U_2 are open Stein subsets of Stein space X, if $U=U_1 \cup U_2 \subset \subset X$ and if $\dim H^1(U, 0)<\infty$, then U is Stein by L.M. Tovar [13].

Let $\mathcal{O}_{ij}=\mathcal{O}_i \cup \mathcal{O}_j$ for the above Stein manifold \mathcal{O}_i, each i and j. Then the union \mathcal{O}_{ij} is not necessarily Stein. We consider exclusively the case that $\mathcal{O}_i \cap \mathcal{O}_j \neq \phi$.

Theorem 3.5. Under the assumption of Lemma 3.4, if in addition $Q \subset E_i \subset \subset \mathbb{C}^n \times S$ for each $i=1, 2, \cdots, n$, then

$$H^1(\mathcal{O}_{jk}, \zeta) = H^0(\mathcal{O}_j \cap \mathcal{O}_k, \zeta) / R(H^0(\mathcal{O}_j, \zeta) \oplus H^0(\mathcal{O}_k, \zeta))$$

for some mapping R and

$$H^q(\mathcal{O}_{jk}, \zeta) = 0 \quad (q \geq 2)$$

for any coherent analytic sheaf ζ on $\mathbb{C}^n \times S$ $(j, k=1, 2, \cdots, n)$.

Proof. The intersection $\mathcal{O}_j \cap \mathcal{O}_k$ is a Stein manifold for each $j, k=1, 2, \cdots, n$. For the coherent analytic sheaf ζ, we have the Mayer–Vietoris exact sequence

$$
\begin{array}{c}
0 \rightarrow H^0(\mathcal{O}_{jk}, \zeta) \rightarrow H^0(\mathcal{O}_j, \zeta) \oplus H^0(\mathcal{O}_k, \zeta) \\
\rightarrow H^0(\mathcal{O}_j \cap \mathcal{O}_k, \zeta) \rightarrow H^1(\mathcal{O}_{jk}, \zeta) \rightarrow \cdots \\
\rightarrow H^{q-1}(\mathcal{O}_j \cap \mathcal{O}_k, \zeta) \rightarrow H^q(\mathcal{O}_{jk}, \zeta) \\
\rightarrow H^q(\mathcal{O}_j, \zeta) \oplus H^q(\mathcal{O}_k, \zeta) \rightarrow \cdots
\end{array}
$$
Global holomorphic solutions of differential equations

for each \(j, k = 1, 2, \ldots, n \). By Lemma 3.4 and the theorem B of Cartan, we have

\[
H^q(\bar{\Omega}_j, \zeta) = H^q(\bar{\Omega}_k, \zeta) = 0, \\
H^q(\bar{\Omega}_j \cap \bar{\Omega}_k, \zeta) = 0 \quad (q \geq 1)
\]

for all \(j, k = 1, 2, \ldots, n \). Therefore, we have

\[
H^1(\bar{\Omega}_{jk}, \zeta) = H^0(\bar{\Omega}_j \cap \bar{\Omega}_k, \zeta) / R(H^0(\bar{\Omega}_j, \zeta) \oplus H^0(\bar{\Omega}_k, \zeta))
\]

and

\[
H^q(\bar{\Omega}_{jk}, \zeta) = 0 \quad (q \geq 2)
\]

for all \(j, k = 1, 2, \ldots, n \).

Corollary 3.6. A necessary and sufficient condition that for any function \(g \in H^0(\bar{\Omega}_j \cap \bar{\Omega}_k, \zeta) \) there exists a function \(f \in (H^0(\bar{\Omega}_j, \zeta) \oplus H^0(\bar{\Omega}_k, \zeta)) \) satisfying a form \(Rf = g \) is that there holds \(H^1(\bar{\Omega}_{jk}, \zeta) = 0 \). And a necessary and sufficient condition for \(H^1(\bar{\Omega}_{jk}, \zeta) = 0 \) is that every function which is locally of the form \(Rf = g \) is also globally of the form.

References

Pusan National University
Pusan 609-735, Korea